Partial differentiation

Table 12.2

Partial derivative Rule

Example:

f(x,y,z)=2x3y +z2

Partial derivative with respect Treat all variables as constants

except for x
to X:— P

ox

Partial derivative with respect Treat all variables as constants

J except for
toy:— P Y

dy
Partial derivative with respect Treat all variables as constants
except for z

to z:—
0z

x = 6x y (12 la)
2/ =2x3 (12.1b)
Ay
2/ —2z (12.1¢)
0z




Wave equation

0’y 10°%
dx2  v2 gt?

Example: Show that the following functions are solutions of the wave equation.
y(x,t) = sin(kz — wt)
y(x,t) = (x — vt)"
y(z,t) = (z +vt)"
1
y(z,t) =




In fact, we can show that any functions with the form,

y(x,t) = f(x +vt) + g(x — vt)

for any differentiable functions f(u) and g(u) are solutions of the wave equation.



X X (sinusoidal wave
y(x, ) = Acos {w( - tﬂ = Acos[wa( - t)} moving in (15.3)
v v

+x-direction)

15.12 -+ CALC Sp;ed of Propagatioﬁ vs. Particle Speed.
(a) Show that Eq. (15.3) may be written as

v(x, 1) = A cos[z%(x - m)}

(b) Use y(x, 7) to find an expression for the transverse velocity v,
of a particle in the string on which the wave travels. (c) Find the
maximum speed of a particle of the string. Under what circum-
stances 1s this equal to the propagation speed v? Less than v?
Greater than v?



15.12.  IDENTIFY: v, =%. v=fA=AUT.
t

SETUP: 2 Acos (2—”@ - vt)] — 1A (ﬂjsin (2—”@ _ w))
ot 2 2 2

t 2 A 2
EXECUTE: (a) Acos 27[[£ - —j = +Acos—”[x - —t) = +Acos—”(x — vt) where & = Af =v has been used.
A T A T A T

y _2av . 2
) v, =a—);=%As1n7ﬂ.(x—vt).

(c) The speed is the greatest when the sine is 1, and that speed is 27zvA/A. This will be equal tov if
A=A/2x, less than vif A< A/2x and greater than v if A> A/27x.

EVALUATE: The propagation speed applies to all points on the string. The transverse speed of a particle of
the string depends on both x and 7.



Example 3.2.

(D

(2)

Find the amplitude, frequency, wavelength, and speed of propa-
gation of the wave described by the equation

y = 0.2cos [m(5t - 2x)].

Here, the units of length and time are taken to be meter and
second, respectively.

When a sinusoidal wave of amplitude 0.1 m and frequency 2 Hz
travels at a speed of 2 m/s in the —Xx direction, derive the
expression for the displacement y at position X at time ¢ by
using an integer, N. Here, we assume that the displacement at
the origin (x = 0) at time t= 0 1s zero, 1.e., ¥ = O.



Solution

(1) From Eq. (3.10), the amplitude is A = 0.2m, the period is T =
0.4 s, and the wavelength is A = 1.0m. From these values, the
frequency, f = 1/T = 2.5Hz, and the propagation speed of the
wave, V= fA=25m/s.

(2) Using A= 0.1m, T = 0.5sand A = VT = 1m (because V =
2m/s), we have

y(x,t) = 0.1 cos {477(t-l— %) + <n+ %) 77}

= —0.1s1in {477(t+ %(Jr %T)} |




15.23 - A horizontal wire is stretched with a tension of 94.0 N,
and the speed of transverse waves for the wire is 492 m/s. What
must the amplitude of a traveling wave of frequency 69.0 Hz be in
order for the average power carried by the wave to be 0.365 W?

15.24 -+ A light wire is tightly stretched with tension F. Trans-
verse traveling waves of amplitude A and wavelength A, carry
average power P, 1 = 0.400 W. If the wavelength of the waves is
doubled, so A, = 2A;, while the tension F' and amplitude A are not
altered, what then 1s the average power P, , carried by the waves?



15.23.

15.24.

IDENTIFY: The average power carried by the wave depends on the mass density of the wire and the
tension in it, as well as on the square of both the frequency and amplitude of the wave (the target variable).

SET UP: PaV:l UF 0’ A%, v = E.
2 u
1 2P v
EXECUTE: Solving P,, =?/ﬂFa)2A2 for A gives A= [Z—avF] . P, =0365W.
"\ 1
w=2xf =27x(69.0 Hz) =433.5 rad/s. The tensionis F =94.0 N and v = \/E SO
U
u _F__94ON 5 egavi0 kg/m.

V2 (492 mfs)?
1/2
2(0.365 W)
(433.5 rad/s)2/(3.883x 107 kg/m)(94.0 N)

EVALUATE: Vibrations of strings and wires normally have small amplitudes, which this wave does.
IDENTIFY: The average power (the target variable) is proportional to the square of the frequency of the
wave and therefore it is inversely proportional to the square of the wavelength.

A= = 451107 m=4.51 mm

SETUP: P, =%\/ﬂFa)2A2 where @=27xf. The wave speedis v= \/E
7

v 2r [F 1 ar*(FY , .. . .
EXECUTE: w=27nf=2mr—=—_|— so P, =—+/uuFF ——| — |A”. This shows that P, is proportional
f 2 1 P av ) H /12 (ﬂj av prop

2 2
to % Therefore Py, A4” =Py ,4; and P, :Pav’l(%j = (0.400 W)[%] =0.100 W.
1

EVALUATE: The wavelength is increased by a factor of 2, so the power is decreased by a factor of 22=4.

N



15.32 - Interference of Triangular Pulses. Two triangular
wave pulses are traveling toward each other on a stretched string
as shown in Fig. E15.32. Each pulse is identical to the other and
travels at 2.00 cm/s. The leading edges of the pulses are 1.00 cm
apart at r+ = 0. Sketch the shape of the string at r = 0.250 s,
t =0500s,r=0.750s,r =1.000s,and r = 1.250s.

Figure E15.32

v =2.00 cm/s v =2.00 cm/s
q h

1.00 cm 1.00 cm 1.00 cm

1.00cm 1.00 cm 1.00cm 1.00 cm



15.32. IDENTIFY: Apply the principle of superposition.
SET UP: The net displacement is the algebraic sum of the displacements due to each pulse.
EXECUTE: The shape of the string at each specified time is shown in Figure 15.32.
EVALUATE: The pulses interfere when they overlap but resume their original shape after they have
completely passed through each other.

_ XN, A 4./\\\_ P

0.250 < 0.500 s 0.750 % 100 5 1255

Figure 15.32



15.38 - CALC Wave Equation and Standing Waves. (a) Prove by
direct substitution that y(x, 1) = (Agw sin kx) sinwt is a solution of

the wave equation, Eq. (15.12), for v = w/k. (b) Explain why the
relationship v = w/k for traveling waves also applies to standing
waves.

15.39 - CALC Let yi(x,7) = Acos(kix — wt) and y,(x, 1) =
A cos(kox — wot) be two solutions to the wave equation, Eq.
(15.12), for the same v. Show that y(x, 1) = yy(x, 1) + ya(x, t) is
also a solution to the wave equation.



15.38.

15.39.

IDENTIFY: Evaluate 9%y/dx* and 9%y/dt* and see if Eq. (15.12) is satisfied for v = aw/k.

SET UP: isinkx =k cos kx. iCoslcx =—ksin kx. 3sin Wt = WCoSs x. icos Wt = —@sin ot

X X t ot
82 82y 2 . . .
EXECUTE: (a) — 02 ——k [A,,, sin @t ]sinkx, 2 =-w[A, sinat]sinkx, so for y(x,?) to be a solution
X t
2
of Eq. (15.12), —k* =2, and v=%).
v

(b) A standing wave is built up by the superposition of traveling waves, to which the relationship v = A/k
applies.

EVALUATE: y(x,t)=(Aqy sinkx)sinax is a solution of the wave equation because it is a sum of
solutions to the wave equation.

IDENTIFY: Evaluate 9%y/dx*and 9> y/az2 and show that Eq. (15.12) is satisfied.

d dy
V)= i“‘a— and —()’1 ¥2) =
X

2 2 2 2
%y _ ¥y, 0%, %y _ 0oy o'y
ox*  ox*  ox? orr ot or
solutions to the wave equation, so

O’y _y 9y ( ! Jazh ( 1 ]82y2 ( 1 j Iy . 9%y, ( jaz
=52 7 =752 = =| = || =+ =| — |=—= and +
o e P W) ar e e [T S e T e

solution of Eq. (15.12).

EVALUATE: The wave equation is a linear equation, as it is linear in the derivatives, and differentiation is
a linear operation.

a)’1 aY2

d
SETUP: —
P o

EXECUTE:

. The functions y,; and y, are given as being




159.89 ¢ CP The lower end of a uniform bar of mass 45.0 kg is
attached to a wall by a frictionless hinge. The bar is held by a hori-
zontal wire attached at its upper end so that the bar makes an angle
of 30.0° with the wall. The wire has length 0.330 m and mass
0.0920 kg. What is the frequency of the fundamental standing wave
for transverse waves on the wire?



15.59.

IDENTIFY: The frequency of the fundamental (the target variable) depends on the tension in the wire. The
bar is in rotational equilibrium so the torques on it must balance.

SET UP: V:F and f==. £z _=0.
Y7, A

EXECUTE: A=2L=0.660 m. The tension F in the wire is found by applying the rotational equilibrium
methods of Chapter 11. Let [ be the length of the bar. Then X7, =0 with the axis at the hinge gives

_ mgtan30° _ (45.0 kg)(9.80 m/s)tan30°

Flcos30°:%lmg sin30°. F 5 =127.3 N.
v= [E o 1273 N —2137mps, f=t =BT gy
y7i (0.0920 kg/0.330 m) A 0.660 m

EVALUATE: This is an audible frequency for humans.



15.60 << CP You are exploring a newly discovered planet. The
radius of the planet is 7.20 X 10’ m. You suspend a lead weight
from the lower end of a light string that is 4.00 m long and has
mass 0.0280 kg. You measure that it takes 0.0600 s for a transverse
pulse to travel from the lower end to the upper end of the string.
On earth, for the same string and lead weight, it takes 0.0390 s for
a transverse pulse to travel the length of the string. The weight of
the string is small enough that its effect on the tension in the string
can be neglected. Assuming that the mass of the planet is distrib-
uted with spherical symmetry, what is its mass?



15.60.

IDENTIFY: The mass of the planet -(the térget variable) determines g at its surface, which in turn
determines the weight of the lead object hanging from the string. The weight is the tension in the string,
which determines the speed of a wave pulse on that string.

m F
SET UP: At the surface of the planet g = G—g. The pulse speed is v=_[—.
R H
p
EXECUTE: On earth, v=—0 M 1 0256x10 mss. 1 =29250KE 7 001073 ke/m?. F = Mg, so
0s 4.00 m
Mg . .
v = |—= and the mass of the lead weight is
u
-3
M =(£]v2 _| 7:00x10 fg/ T 1(1.0256x10% m/s)2 =7.513 ke. On the planet,
g 9.8 m/s
4. , 00x107° k
1 =M= 66.67 m/s. Therefore g =(£)v2 = 7.00x10°" kg/m (66.67 m/s)2 —4.141 m/s?.
0.0600 s M 7.513 kg

=3.22x10%° kg.

m, gR>  (4.141 m/s?)(7.20x 107 m)?
g=G—; and m, = = 0 2,02
2 G 6.6742x107" N-m2/kg

EVALUATE: This mass 1s about 50 times that of Earth, but its radius 1s about 10 times that of Earth, so the
result is reasonable.



15.62 <<« CP A 5.00-m, 0.732-kg wire is used to support two uni-
form 235-N posts of equal length (Fig. P15.62). Assume that the
wire is essentially horizontal and that the speed of sound is
344 m/s. A strong wind is blowing, causing the wire to vibrate in
its 5th overtone. What are the frequency and wavelength of the
sound this wire produces?

Figure P15.62

Wire

57.0° 57.0°




15.62.

IDENTIFY: Apply X7, =0 to one post and calculate the tension in the wire. v =./F/u for waves on the
wire. v= fA. The standing wave on the wire and the sound it produces have the same frequency. For

standing waves on the wire, 4, = 2
n
SET UP: For the 5th overtone, n = 6. The wire has g =m/L =(0.732 kg)/(5.00 m)=0.146 kg/m. The

free-body diagram for one of the posts is given in Figure 15.62. Forces at the pivot aren’t shown. We take
the rotation axis to be at the pivot, so forces at the pivot produce no torque.

L 235N
EXECUTE: X7, =0 gives w(—cosS’/ 0"] T(Lsin57.0°)=0. ad _ 23 =76.3 N. For
2tan 57.0° 2tan57.0°

waves on the wire, v= 763N _ =22.9 m/s. For the 5th overtone standing wave on the wire,
0.146 kg/m

A :£ _26.00m) =1.67Tm. f= A :M =13.7 Hz. The sound waves have frequency 13.7 Hz and

6 6 " 1.67m

wavelength A= 344 /s
13.7

=250m

Hz

EVALUATE: The frequency of the sound wave is just below the lower limit of audible frequencies. The
wavelength of the standing wave on the wire is much less than the wavelength of the sound waves, because
the speed of the waves on the wire is much less than the speed of sound in air.

axis

Figure 15.62



15.74 -+ CALC A guitar string is vibrating in its fundamental
mode, with nodes at each end. The length of the segment of the string
that 1s free to vibrate is 0.386 m. The maximum transverse accelera-
tion of a point at the middle of the segment is 8.40 X 10° m/s? and
the maximum transverse velocity is 3.80 m/s. (a) What is the ampli-
tude of this standing wave? (b) What is the wave speed for the trans-
verse traveling waves on this string?



15.74.

IDENTIFY: The displacement of the string at any point is y(x,?) = (Agyw sinkx)sin @t. For the fundamental
mode A=2L, so at the midpoint of the string sinkx =sin(27/4)(L/2)=1, and y = Aqy sin@t. The

transverse velocity is v, = dy/of and the transverse acceleration is a, = dv,/ot.

Y

SET UP: Taking derivatives gives v y, max = @Agwy, and

0 . :
y = B_y = WAgy cos @t, with maximum value v
t

_ oy
YT or

EXECUTE: w=a /

y, max’Vy, max

a = —a)ZASW sinwt, with maximum value a = a)2ASW.

y, max

= (8.40%10° m/s?)/(3.80 m/s) = 2.21x 10> rad/s, and then
Asw =V, max! @=(3.80 m/8)/(2.21x10° rad/s) =1.72x10™ m.
(b) v=Af = QL)@/27) = Lo/ 7 = (0.386 m)(2.21x10> rad/s)/ 7 = 272 m/s.

EVALUATE: The maximum transverse velocity and acceleration will have different (smaller) values at
other points on the string.



16.39 ¢+ Tuning a Violin. A violinist is tuning her instrument
to concert A (440 Hz). She plays the note while listening to an
electronically generated tone of exactly that frequency and hears a
beat of frequency 3 Hz, which increases to 4 Hz when she tightens
her violin string slightly. (a) What was the frequency of the note
played by her violin when she heard the 3-Hz beat? (b) To get her
violin perfectly tuned to concert A, should she tighten or loosen
her string from what it was when she heard the 3-Hz beat?



16.39.

IDENTIFY: The beat is due to a difference in the frequencies of the two sounds.
SETUP:  f,... = fi — f>. Tightening the string increases the wave speed for transverse waves on the string

and this in turn increases the frequency.

EXECUTE: (a) If the beat frequency increases when she raises her frequency by tightening the string, it
must be that her frequency is 433 Hz, 3 Hz above concert A.

(b) She needs to lower her frequency by loosening her string.

EVALUATE: The beat would only be audible if the two sounds are quite close in frequency. A musician
with a good sense of pitch can come very close to the correct frequency just from hearing the tone.



16.45 - Two train whistles, A and B, each have a frequency of
392 Hz. A 1s stationary and B 1s moving toward the right (away
from A) at a speed of 35.0 m/s. A listener is between the two
whistles and is moving toward the right with a speed of 15.0 m/s
(Fig. E16.45). No wind is blowing. (a) What is the frequency from
A as heard by the listener? (b) What is the frequency from B as
heard by the listener? (c) What is the beat frequency detected by
the listener?

Figure E16.45
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16.45. IDENTIFY: Apply the Doppler shift equation f; = (V VL ] fs-
v+ Vg

SET UP: The positive direction is from listener to source. fq =392 Hz.

j(392 Hz) =375 Hz

344 m/s

@) vs=0. vy ==150m/s. f =£V+"L)fs {344 m/s —15.0 mv/s
V+VS

j(392 Hz)=371 Hz

344 m/s +35.0 m/s

(b) vs =+35.0 m/s. v, =+15.0 m/s. f; =(
V+VS

v+vLjf _(344 m/s +15.0 m/s
(=

(c) fbeat - fl _f2 =4 Hz
EVALUATE: The distance between whistle A and the listener is increasing, and for whistle A f; < fg. The

distance between whistle B and the listener is also increasing, and for whistle B f] < fq.



16.56 ¢ The shock-wave cone created by the space shuttle at one
instant during its reentry into the atmosphere makes an angle of
58.0° with its direction of motion. The speed of sound at this alti-
tude is 331 m/s. (a) What is the Mach number of the shuttle at this
instant, and (b) how fast (in m/s and in mi/h) is it traveling rela-
tive to the atmosphere? (c) What would be its Mach number and
the angle of its shock-wave cone if it flew at the same speed but at
low altitude where the speed of sound is 344 m/s?



16.56.

IDENTIFY: Apply Eq. (16.31).
SET UP: The Mach number is the value of vg/v, where vg is the speed of the shuttle and v is the speed of

sound at the altitude of the shuttle.

EXECUTE: (a) Y —sine =sin58.0° = 0.848. The Mach number is v—sz;zl.l&
Vg v 0.848
(b) vg=—2— =331 _ 390 1y
sina sin58.0°
(c) V—S:M:I.B. The Mach number would be 1.13. sine = — = 344 m/s and a=61.9°.
v 344 m/s vg 390 m/s

EVALUATE: The smaller the Mach number, the larger the angle of the shock-wave cone.



16.64 -<- CP A New Musical Instrument. You have designed
a new musical instrument of very simple construction. Your design
consists of a metal tube with length L and diameter L/10. You
have stretched a string of mass per unit length w across the open
end of the tube. The other end of the tube is closed. To produce the
musical effect you’re looking for, you want the frequency of the
third-harmonic standing wave on the string to be the same as the fun-
damental frequency for sound waves in the air column in the tube.
The speed of sound waves in this air column is v,. (a) What must
be the tension of the string to produce the desired effect? (b) What
happens to the sound produced by the instrument if the tension is
changed to twice the value calculated in part (a)? (c) For the ten-
sion calculated in part (a), what other harmonics of the string, if
any, are in resonance with standing waves in the air column?



16.64.

IDENTIFY: The harmonics of the string are f, =nf; = n(zllj, where [ is the length of the string. The tube

is a stopped pipe and its standing wave frequencies are given by Eq. (16.22). For the string, v =+/F/u,

where F is the tension in the string.

- 1
SETUp: The length of the string is d = L/10, so its third harmonic has frequency f;"" = 3%‘/”#'

The stopped pipe has length L, so its first harmonic has frequency fPP® = ﬁ

: ~ ~ : . 1
EXECUTE: (a) Equating f""" and fP®® and using d = L/10 gives F = %ﬂvsz :
(b) If the tension is doubled, all the frequencies of the string will increase by a factor of V2. In particular,
the third harmonic of the string will no longer be in resonance with the first harmonic of the pipe because
the frequencies will no longer match, so the sound produced by the instrument will be diminished.
(¢) The string will be in resonance with a standing wave in the pipe when their frequencies are equal. Using
fPPe =3 £3508 - the frequencies of the pipe are nf{’ ipe _ 3nf1String (where n=1, 3, 5, &). Setting this
equal to the frequencies of the string n’flsmng , the harmonics of the string are n'=3n=23,9,15, = The nth

harmonic of the pipe is in resonance with the 3nth harmonic of the string.

EVALUATE: Each standing wave for the air column is in resonance with a standing wave on the string.
But the reverse is not true; not all standing waves of the string are in resonance with a harmonic of

the pipe.



16.82 -+ On a clear day you see a jet plane flying overhead. From
the apparent size of the plane, you determine that it is flying at a
constant altitude /. You hear the sonic boom at time 7 after the
plane passes directly overhead. Show that if the speed of sound v
is the same at all altitudes, the speed of the plane is

hv
\/h2 — v?7?

(Hint: Trigonometric identities will be useful.)

Ug —




16.82.  IDENTIFY and SET UP: Use Figure (16.37) to relate & and T.
Use this in Eq. (16.31) to eliminate sinc.

sin sin

EXECUTE: Eq. (16.31): sina =v/vg From Figure 16.37 tana = h/vgT. And tano = = .
cos \/1 —sin’ &

. . h v/v h v
Combining these equations we get = S and — =—.
W Ji-ovg? T 1= (ivg)?
v2T2 v2 16.37 You hear a sonic boom when the shock wave reaches yo
2 _ 2 _
1-(vlvg)” = 2 and vg = 22,2 at L (not just when the plane breaks the sound barrier). A listener
h 1=vT"/h the right of L has not yet heard the sonic boom but will shortly; a
hv listener to the left of L has already heard the sonic boom.

Vg = ———=as was to be shown.
[2_ 272
h*—=v°T

EVALUATE: For a given h, the faster the speed vg of the plane, the greater is the delay time 7. The

maximum delay time is A/v, and T approaches this value as vg —co. T =0 as v = vg.

Listener

| vgt |



Example 3.5. Let us discuss a sinusoidal wave moving in the + X
direction.

20T X

yi(x,t) = Asin - (t— ‘—/> .

A wall located at x= L refiects this wave. Answer the following
questions for each of the following two cases: (a) The wall 1s a fixed
end. (b) The wall 1s a free end.

(1) Find the expression for the reflected wave.
(2) Find the expression for the resultant wave produced by the
incident wave and the reflected wave.

Note that a fixed end 1s an end where the amplitude of the
resultant wave of the incident and reflected waves vanishes at all
times, whereas a free end 18 an end where the displacement of the
reflected wave 1s equal to that of the incident wave.



Solution

(1) The reflected wave moves in the — X direction, and has the same
amplitude, period, and velocity as the incident wave. Therefore,
the reflected wave can be written as

. 2m X
yQ(X,t) = ASIH{T (t-l- ;-I- ,8)},

where B is a constant that is to be determined by the condition
that the wave should satisfy at the end x= L (a boundary
condition).

(a) In the case where x = L is a fixed end, the displacement
y must always satisfy the condition y(L,t) = y;(L,b) +
(L, t) = 0. Therefore,

. 2T L . 2m L
sm7<t— 7)+ sm{7<t+ ;+ B)}_ 0.

From this equation, B is determined to be B =
we obtain

.| 2m XxX—- 2L
Y(x, t) = ASIH{T (t+ - >+ rr}

.| 2m X-2L
_—Asm{T <t+ v )}

(b) On the other hand, in the case where x = L is a free end,
the displacement y must satisfy the condition. yj(L,t) =
yo(L, ). Therefore,

sin2—77_T(t— %) = sin{2—77_7<t+ £V+ ,8)}

From this equation, B is determined to be B = — %, and we

obtain

217

Y, b = Asin {7 <t+ X"V2L>}.

(2) The resultant wave is Y(X, 1) = y1(x,t) + y»(x,t). Then, we have

(a) ¥(x,t) = 2Asin <2—.;_TL;X> -cos{z—;_T<t— %)}

(b) y(x, ) = 2A cos (2—;7 - L;X) sin {2—;T(t_ %)}

We can see that these resultant waves are standing waves,
oscillating independently in time and 1n sSpace. m




