
Partial differentiation



Wave equation
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Example: Show that the following functions are solutions of the wave equation.



In fact, we can show that any functions with the form,

for any differentiable functions f(u) and g(u) are solutions of the wave equation.





 15.12. IDENTIFY:   .
∂

=
∂

y

y
v

t
 / .λ λ= =v f T  

SET UP:   
2 2 2

cos ( ) sin ( )
π π π

λ λ λ

∂      
− = + −     

∂      

v
A x vt A x vt

t
 

EXECUTE:  (a) 

2 2
cos2 cos cos ( )

x t
A A x t A x vt

T T

π λ π
π

λ λ λ

   
− = + − = + −      

where 

λ
λ= =f v

T
 has been used. 

(b) 
2 2

sin ( ).
π π

λ λ

∂
= = −

∂
y

y v
v A x vt

t
 

(c) The speed is the greatest when the sine is 1, and that speed is 2 / .π λvA  This will be equal to v  if 

/2 ,λ π=A  less than v if /2λ π<A  and greater than v  if /2 .λ π>A  

EVALUATE:   The propagation speed applies to all points on the string. The transverse speed of a particle of 

the string depends on both x and t. 



E xam p le 3.2 .

(1) F ind the amplitude, frequency, wavelength , and sp eed of propa-

gat ion of t he wave describ ed by t he equat ion

y = 0.2 cos [π(5t − 2x)].

Here, t he unit s of lengt h and t ime are t aken t o be met er and

second, resp ect ively.

(2) When a sinusoidal wave of amplit ude 0.1 m and frequency 2 Hz

t ravels at a sp eed of 2 m/ s in t he − x direct ion, derive t he

expression for t he displacement y at posit ion x at t ime t by

using an int eger , n. Here, we assume that t he displacement at

t he origin (x = 0) at t ime t = 0 is zero, i.e., y = 0.



Solu t ion

(1) From Eq. (3.10), t he amplit ude is A = 0.2 m , t he period is T =

0.4 s, and t he wavelengt h is λ = 1.0 m. From these values, t he

frequency, f = 1/ T = 2.5 Hz, and the propagat ion speed of t he

wave, V = f λ = 2.5 m / s.

(2) Using A = 0.1 m, T = 0.5 s and λ = VT = 1 m (because V =

2 m / s), we have

y(x, t) = 0.1 cos 4π t +
x

2
+ n +

1

2
π

= − 0.1 sin 4π t +
x

2
+

nπ

4
.





 15.23. IDENTIFY:   The average power carried by the wave depends on the mass density of the wire and the 

tension in it, as well as on the square of both the frequency and amplitude of the wave (the target variable).  

SET UP:   2 2
av

1
,

2
µ ω=P F A  .

µ
=

F
v  

EXECUTE:   Solving 2 2
av

1

2
µ ω=P F A  for A gives

1/2

av
2

2
.

ω µ

 
=   
 

P
A

F
 av 0 365 W.= .P  

2 2 (69 0 Hz) 433 5 rad/s.ω π π= = . = .f  The tension is 94 0 N= .F  and 
µ

=
F

v  so 

4

2 2

94.0 N
3.883 10  kg/m.

(492 m/s)

F

v
µ −= = = ×

1/2

3

2 4

2(0.365 W)
4 51 10  m 4.51 mm

(433.5 rad/s) (3.883 10  kg/m)(94.0 N)
A −

−

 
 = = . × =
 × 

 

EVALUATE:   Vibrations of strings and wires normally have small amplitudes, which this wave does. 

 15.24. IDENTIFY:   The average power (the target variable) is proportional to the square of the frequency of the 

wave and therefore it is inversely proportional to the square of the wavelength. 

SET UP:   2 2
av

1

2
µ ω=P F A  where  2 .ω π= f  The wave speed is .

µ
=

F
v  

EXECUTE:   
2

2 2
π

ω π π
λ λ µ

= = =
v F

f  so 
2

2
av 2

1 4
.

2

π
µ

µλ

 
=  

 

F
P F A  This shows that avP  is proportional 

to 
2

1
.

λ
 Therefore 

2 2
av,1 1 av,2 2λ λ=P P  and 

2 2

1 1
av,2 av,1

2 1

(0 400 W) 0 100 W.
2

λ λ

λ λ

   
= = . = .   

   
P P  

EVALUATE:   The wavelength is increased by a factor of 2, so the power is decreased by a factor of 
2

2 4.=  

P
2

I r





 

 15.32. IDENTIFY:   Apply the principle of superposition. 

SET UP:   The net displacement is the algebraic sum of the displacements due to each pulse. 

EXECUTE:   The shape of the string at each specified time is shown in Figure 15.32. 

EVALUATE:   The pulses interfere when they overlap but resume their original shape after they have 

completely passed through each other. 
 

Figure 15.32 





 15.38. IDENTIFY:   Evaluate 2 2/∂ ∂y x  and 2 2/∂ ∂y t and see if Eq. (15.12) is satisfied for / .ω=v k  

SET UP:   sin cos .
∂

=
∂

kx k kx
x

 cos sin .
∂

= −
∂

kx k kx
x

 sin cos .ω ω ω
∂

=
∂

t t
t

 cos sint t
t

ω ω ω
∂

= −
∂

 

EXECUTE:   (a) 
2

2
sw2

[ sin ]sin ,ω
∂

= −
∂

y
k A t kx

x
 

2
2

sw2
[ sin ]sin ,ω ω

∂
= −

∂

y
A t kx

t
 so for ( , )y x t  to be a solution 

of Eq. (15.12), 
2

2

2
,

ω−
− =k

v
 and .

ω
=v

k
 

(b) A standing wave is built up by the superposition of traveling waves, to which the relationship /λ=v k  

applies. 

EVALUATE:   SW( , ) ( sin )sinω=y x t A kx t  is a solution of the wave equation because it is a sum of 

solutions to the wave equation. 

 15.39. IDENTIFY:   Evaluate 
2 2

/∂ ∂y x and 
2 2

/∂ ∂y t  and show that Eq. (15.12) is satisfied. 

SET UP:   1 2
1 2( )

∂ ∂ ∂
+ = +

∂ ∂ ∂

y y
y y

x x x
 and 1 2

1 2( )
∂ ∂ ∂

+ = +
∂ ∂ ∂

y y
y y

t t t
 

EXECUTE:   
2 2 2

1 2
2 2 2

∂ ∂ ∂
= +

∂ ∂ ∂

y y y

x x x
 and 

2 2 2
1 2

2 2 2
.

∂ ∂ ∂
= +

∂ ∂ ∂

y y y

t t t
 The functions 1y  and 2y  are given as being 

solutions to the wave equation, so 

2 2 2 2 2 2 2 2
1 2 1 2 1 2

2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
= + = + = + =        

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         

y y y y y y y y

x x x v t v t v t t v t
 and so 1 2= +y y y  is a 

solution of Eq. (15.12). 

EVALUATE:   The wave equation is a linear equation, as it is linear in the derivatives, and differentiation is 

a linear operation. 

2L  v





15.59.  IDENTIFY:   The frequency of the fundamental (the target variable) depends on the tension in the wire. The 

bar is in rotational equilibrium so the torques on it must balance. 

SET UP:   
µ

=
F

v  and .
λ

=
v

f  0.τΣ =z  

EXECUTE:   2 0 660 m.λ = = .L  The tension F in the wire is found by applying the rotational equilibrium 

methods of Chapter 11. Let l  be the length of the bar.  Then 0τΣ =z  with the axis at the hinge gives 

1
cos30 sin30 .

2
Fl lmg° = °  

2
tan30 (45.0 kg)(9.80 m/s ) tan30

127.3 N.
2 2

mg
F

° °
= = =  

127 3 N
21 37 m/s.

(0 0920 kg/0 330 m)µ

.
= = = .

. .

F
v  

21 37 m/s
32 4 Hz

0 660 mλ

.
= = = .

.

v
f  

EVALUATE:   This is an audible frequency for humans. 





E :   This is an audible frequency for humans. 

15.60.  IDENTIFY:   The mass of the planet (the target variable) determines g at its surface, which in turn 

determines the weight of the lead object hanging from the string. The weight is the tension in the string, 

which determines the speed of a wave pulse on that string. 

SET UP:   At the surface of the planet 
p

2
p

.=
m

g G
R

 The pulse speed is .
µ

=
F

v  

EXECUTE:   On earth, 24.00 m
1.0256 10  m/s.

0.0390 s
v = = ×  3 30.0280 kg

7.00 10  kg/m .
4.00 m

µ −= = ×  F = Mg, so 

µ
=

Mg
v and the mass of the lead weight is 









15.74.  IDENTIFY:   The displacement of the string at any point is SW( , ) ( sin )sin .y x t A kx tω=  For the fundamental 

mode 2 ,λ = L  so at the midpoint of the string sin sin(2 / )( /2) 1,π λ= =kx L  and SW sin .y A tω=  The 

transverse velocity is /= ∂ ∂yv y t and the transverse acceleration is / .= ∂ ∂y ya v t  

SET UP:   Taking derivatives gives SW cos ,y

y
v A t

t
ω ω

∂
= =

∂
 with maximum value , max SW ,yv Aω=  and 

2
SW sin ,

y
y

v
a A t

t
ω ω

∂
= = −

∂
 with maximum value 2

, max SW .ya Aω=  

EXECUTE:   3 2 3
, max , max/ (8 40 10 m/s )/(3 80 m/s) 2 21 10 rad/s,y ya vω = = . ×  .  = . ×   and then 

3 3
SW , max/ (3.80 m/s)/(2.21 10 rad/s) 1.72 10  m.yA v ω −= =  ×  = ×  

(b) 
3(2 )( /2 ) / (0 386 m)(2 21 10 rad/s) 272 m/s.v f L Lλ ω π ω π π= = = = . . ×  / =   

EVALUATE:   The maximum transverse velocity and acceleration will have different (smaller) values at 

other points on the string. 

15.75.  I :   Carry out the derivation as done in the text for Eq. (15.28). The transverse velocity is 





destructive interference. 

 16.39. IDENTIFY:   The beat is due to a difference in the frequencies of the two sounds. 

SET UP:   beat 1 2.f f f= −  Tightening the string increases the wave speed for transverse waves on the string 

and this in turn increases the frequency. 

EXECUTE:   (a) If the beat frequency increases when she raises her frequency by tightening the string, it 

must be that her frequency is 433 Hz, 3 Hz above concert A. 

(b) She needs to lower her frequency by loosening her string. 

EVALUATE:   The beat would only be audible if the two sounds are quite close in frequency. A musician 

with a good sense of pitch can come very close to the correct frequency just from hearing the tone. 

= − λ=





 16.45. IDENTIFY:   Apply the Doppler shift equation L
L S

S

.
v v

f f
v v

 +
=  

+ 
 

SET UP:   The positive direction is from listener to source. S 392 Hz.f =  

(a) S 0.v =  L 15 0 m/s.v = − .  L
L S

S

344 m/s 15 0 m/s
(392 Hz) 375 Hz

344 m/s

v v
f f

v v

 + − . 
= = =   

+   
 

(b) S 35 0 m/s.v = + .  L 15 0 m/s.v = + .  L
L S

S

344 m/s 15 0 m/s
(392 Hz) 371 Hz

344 m/s 35 0 m/s

v v
f f

v v

 + + . 
= = =   

+ + .  
 

(c) beat 1 2 4 Hzf f f= − =  

EVALUATE:   The distance between whistle A and the listener is increasing, and for whistle A L S.f f<  The 

distance between whistle B and the listener is also increasing, and for whistle B L S.f f<  









 16.64. IDENTIFY:   The harmonics of the string are 1 ,
2

n

v
f nf n

l

 
= =  

 
 where l is the length of the string. The tube 

is a stopped pipe and its standing wave frequencies are given by Eq. (16.22). For the string, / ,v F µ=  

where F is the tension in the string. 

SET UP:   The length of the string is /10,d L=  so its third harmonic has frequency 
string

3

1
3 / .

2
f F

d
µ=  

The stopped pipe has length L, so its first harmonic has frequency 
pipe s

1 .
4

v
f

L
=  

EXECUTE:   (a) Equating 
string

1f  and 
pipe

1f  and using 2
s

1
/10 gives .

3600
d L F vµ= =  

(b) If the tension is doubled, all the frequencies of the string will increase by a factor of 2.  In particular, 

the third harmonic of the string will no longer be in resonance with the first harmonic of the pipe because 

the frequencies will no longer match, so the sound produced by the instrument will be diminished. 

(c) The string will be in resonance with a standing wave in the pipe when their frequencies are equal. Using 
pipe string

1 13 ,f f=  the frequencies of the pipe are 
pipe string

1 13nf nf=  (where 1,  3, 5, ).n = �  Setting this 

equal to the frequencies of the string string
1 ,n f′  the harmonics of the string are 3 3, 9,15,n n′ = = � The nth 

harmonic of the pipe is in resonance with the 3nth harmonic of the string. 

EVALUATE:   Each standing wave for the air column is in resonance with a standing wave on the string. 

But the reverse is not true; not all standing waves of the string are in resonance with a harmonic of  

the pipe. 





same in both cases. 

 16.82. IDENTIFY and SET UP:   Use Figure (16.37) to relate α  and T. 

Use this in Eq. (16.31) to eliminate sinα .  

EXECUTE:   Eq. (16.31): Ssin /v vα =  From Figure 16.37 Stan / .h v Tα =  And 
2

sin sin
tan .

cos 1 sin

α α
α

α α
= =

−
 

Combining these equations we get S

2
S S

/

1 ( / )

h v v

v T v v
=

−
 and 

2
S

.
1 ( / )

h v

T v v
=

−
 

2 2
2

S 2
1 ( / )

v T
v v

h
− =  and 

2
2
S 2 2 21 /

v
v

v T h
=

−
 

S
2 2 2

hv
v

h v T
=

−
 as was to be shown. 

EVALUATE:   For a given h, the faster the speed Sv  of the plane, the greater is the delay time T. The 

maximum delay time is / ,h v  and T approaches this value as S .v → ∞  0T →  as S.v v→  



E xam p le 3 .5 . Let us discuss a sinusoidal wave moving in t he + x

direct ion.

y1(x, t) = A sin
2π

T
t −

x

v
.

A wall locat ed at x = L refl ect s t his wave. Answer t he following

quest ions for each of t he following two cases: (a) T he wall is a fi xed

end. (b) T he wall is a free end.

(1) F ind t he expression for t he refl ect ed wave.

(2) F ind t he expression for t he result ant wave produced by t he

incident wave and t he refl ect ed wave.

Not e t hat a fi xed end is an end where t he amplit ude of t he

result ant wave of t he incident and refl ect ed waves vanishes at all

t imes, whereas a free end is an end where the displacement of t he

refl ect ed wave is equal t o t hat of t he incident wave.



Solu t ion

(1) T he refl ect ed wave moves in t he − x direct ion, and has t he same

amplit ude, p eriod, and velocity as t he incident wave. T herefore,

t he refl ect ed wave can be writ t en as

y2(x, t) = A sin
2π

T
t +

x

v
+ β ,

where β is a const ant t hat is t o be det ermined by the condit ion

that t he wave should sat isfy at t he end x = L (a b oundary

condit ion).

(a) In t he case where x = L is a fi xed end, t he displacement

y must always sat isfy t he condit ion y(L , t) = y1(L , t) +

y2(L, t) = 0. T herefore,

sin
2π

T
t −

L

v
+ sin

2π

T
t +

L

v
+ β = 0.

From this equat ion, β is det ermined t o be β = T
2 − 2L

v , and

we obt ain

y2(x, t) = A sin
2π

T
t +

x − 2L

v
+ π

= − A sin
2π

T
t +

x − 2L

v
.

(b) On the ot her hand, in t he case where x = L is a free end,

t he displacement y must sat isfy t he condit ion. y1(L , t) =

y2(L, t). T herefore,

sin
2π

T
t −

L

v
= sin

2π

T
t +

L

v
+ β .

From this equat ion, β is det ermined to be β = − 2L
v
, and we

obtain

y2(x, t) = A sin
2π

T
t +

x − 2L

v
.

(2) T he result ant wave is y(x, t) = y1(x, t) + y2(x, t). T hen , we have

(a) y(x, t) = 2A sin
2π

T
·

L − x

v
· cos

2π

T
t −

L

v

(b) y(x, t) = 2A cos
2π

T
·

L − x

v
· sin

2π

T
t −

L

v
.

We can see t hat t hese result ant waves are st anding waves,

oscillat ing independent ly in t ime and in space.


