
















 18.24. IDENTIFY:   Use pV nRT= to calculate the number of moles and then the number of molecules would be 

A.N nN=  

SET UP:   51 atm 1 013 10  Pa.= . ×  3 6 31 00 cm 1 00 10  m .−. = . ×  23
A 6 022 10  molecules/mol.N = . ×  

EXECUTE:   (a) 
14 5 6 3

18(9 00 10  atm)(1 013 10  Pa/atm)(1 00 10  m )
3 655 10  mol.

(8 314 J/mol K)(300 0 K)

pV
n

RT

− −
−. × . × . ×

= = = . ×
. ⋅ .

 

18 23 6
A (3 655 10  mol)(6 022 10  molecules/mol) 2 20 10  molecules.N nN

−= = . × . × = . ×  

(b) ApVN
N

RT
=  so A constant

N VN

p RT
= = and 1 2

1 2

.
N N

p p
=  

6 192
2 1 14

1

1 00 atm
(2 20 10  molecules) 2 44 10  molecules.

9 00 10  atm

p
N N

p −

  . 
= = . × = . ×   

. ×  
 

EVALUATE:   The number of molecules in a given volume is directly proportional to the pressure. Even at 

the very low pressure in part (a) the number of molecules in 
3

1 00 cm. is very large. 



the very low pressure in part (a) the number of molecules in 1 00 cm. is very large. 

 18.25. IDENTIFY:   We are asked about a single state of the system. 

SET UP:   Use the ideal-gas law. Write n in terms of the number of molecules N. 

(a) EXECUTE:   ,pV nRT=  An N/N=  so A( )pV N/N RT=  

A

N R
p T

V N

  
=   
  

 

12

6 3 23

80 molecules 8 3145 J/mol K
(7500 K) 8 28 10  Pa

1 10  m 6 022 10  molecules/mol
p −

−

. ⋅  
= = . ×  

× . ×  
 

178 2 10  atmp −= . × .  This is much lower than the laboratory pressure of 149 10  atm−×  in Exercise 18.24. 

(b) EVALUATE:   The Lagoon Nebula is a very rarefied low pressure gas. The gas would exert very little 

force on an object passing through it. 

 18.26. IDENTIFY:   pV nRT NkT= =  





 18.28. IDENTIFY:   Use pV nRT= and 
A

N
n

N
= with 1N = to calculate the volume V occupied by 1 molecule. 

The length l of the side of the cube with volume V is given by 
3
.V l=  

SET UP:   27 C 300 KT = ° = .  
5

1 00 atm 1 013 10  Pap = . = . × .  8 314 J/mol KR = . ⋅ .  

23
A 6 022 10  molecules/molN = . × .   

The diameter of a typical molecule is about 1010  m− .  90 3 nm 0 3 10  m−. = . × .  

EXECUTE:   (a) pV nRT= and 
A

N
n

N
= gives  

26 3

23 5
A

(1 00)(8 314 J/mol K)(300 K)
4 09 10  m

(6 022 10  molecules/mol)(1 013 10  Pa)

NRT
V

N p

−. . ⋅
= = = . × .

. × . ×
 

1 3 9
3 45 10  m.

/
l V

−= = . ×  

(b) The distance in part (a) is about 10 times the diameter of a typical molecule. 

(c) The spacing is about 10 times the spacing of atoms in solids. 

EVALUATE:   There is space between molecules in a gas whereas in a solid the atoms are closely packed 

together. 

 18.29. (a) I  and S U :   Use the density and the mass of 5.00 mol to calculate the volume. m/Vρ =  











Bernoulli’s equation

• Bernoulli’s equation is:

• It is due to the fact that the work done 

on a unit volume of fluid by the 

surrounding fluid is equal to the sum of 

the changes in kinetic and potential 

energies per unit volume that occur 

during the flow.





 18.57. IDENTIFY:   We are asked to compare two states. Use the ideal-gas law to obtain m2 in terms of m1 and the 

ratio of pressures in the two states. Apply Eq. (18.4) to the initial state to calculate m1. 

SET UP:   pV nRT=  can be written ( / )pV m M RT=  

T, V, M, R are all constant, so / / constantp m RT MV= = .  

So 1 1 2 2/ / ,p m p m=  where m is the mass of the gas in the tank. 

EXECUTE:   
6 5 6

1 1 30 10  Pa 1 01 10  Pa 1 40 10  Pap = . × + . × = . ×  
5 5 5

2 2 50 10  Pa 1 01 10  Pa 3 51 10  Pap = . × + . × = . ×  

1 1 / ;m p VM RT=  2 2 3(1 00 m) (0 060 m) 0 01131 mV hA h rπ π= = = . . = .  
6 3 3

1

(1 40 10  Pa)(0 01131 m )(44 1 10  kg/mol)
0 2845 kg

(8 3145 J/mol K)((22 0 273 15)K)
m

−. × . . ×
= = .

. ⋅ . + .
 

Then 
5

2
2 1 6

1

3 51 10  Pa
(0 2845 kg) 0 0713 kg

1 40 10  Pa

p
m m

p

   . ×
= = . = . .    . ×   

 

2m  is the mass that remains in the tank. The mass that has been used is 

1 2 0 2845 kg 0 0713 kg 0 213 kgm m− = . − . = . .  

EVALUATE:   Note that we have to use absolute pressures. The absolute pressure decreases by a factor of 

four and the mass of gas in the tank decreases by a factor of four. 

 18.58. I :   Apply pV nRT= to the air inside the diving bell. The pressure p at depth y below the surface 



 18.65. IDENTIFY:   Apply Bernoulli’s equation to relate the efflux speed of water out the hose to the height of 

water in the tank and the pressure of the air above the water in the tank. Use the ideal-gas equation to relate 

the volume of the air in the tank to the pressure of the air. 

(a) SET UP:   Points 1 and 2 are shown in Figure 18.65. 
 

 5
1 4 20 10  Pap = . ×  

5
2 air 1 00 10  Pap p= = . ×  

large tank implies 1 0v ≈  

Figure 18.65   
 

EXECUTE:   2 21 1
1 1 1 2 2 22 2

p gy v p gy vρ ρ ρ ρ+ + = + +  

21
2 1 2 1 22

( )v p p g y yρ ρ= − + −  

2 1 2 1 2(2/ )( ) 2 ( )v p p g y yρ= − + −  

2 26 2 m/sv = .  

(b) 3 00 mh = .  

The volume of the air in the tank increases so its pressure decreases. constant,pV nRT= =  so 0 0pV p V=  

0( p  is the pressure for 0 3 50 mh = .  and p is the pressure for 3 00 m)h = .  

0 0(4 00 m ) (4 00 m )p h A p h A. − = . −  

5 50
0

4 00 m 4 00 m 3 50 m
(4 20 10  Pa) 2 10 10  Pa

4 00 m 4 00 m 3 00 m

h
p p

h

. − . − .   
= = . × = . ×   

. − . − .   
 

Repeat the calculation of part (a), but now 5
1 2 10 10  Pap = . ×  and 1 3 00 my = . .  

2 1 2 1 2(2/ )( ) 2 ( )v p p g y yρ= − + −  

2 16 1 m/sv = .  

2 00 mh = .  

5 50
0

4 00 m 4 00 m 3 50 m
(4 20 10  Pa) 1 05 10  Pa

4 00 m 4 00 m 2 00 m

h
p p

h

. − . − .   
= = . × = . ×   

. − . − .   
 

2 1 2 1 2(2/ )( ) 2 ( )v p p g y yρ= − + −  

2 5 44 m/sv = .  

(c) 2 0v =  means 1 2 1 2(2 )( ) 2 ( ) 0/ p p g y yρ − + − =  

1 2 1 2( )p p g y yρ− = − −  

1 2 1 00 my y h− = − .  

5
0

0 50 m 0 50 m
(4 20 10  Pa)

4 00 m 4 00 m
p p

h h

. .   
= = . × .   

. − . −   
 This is 1,p so 

5 5 2 30 50 m
(4 20 10  Pa) 1 00 10  Pa (9 80 m/s )(1000 kg/m )(1 00 m )

4 00 m
h

h

. 
. × − . × = . . − 

. − 
 

(210 (4 00 )) 100 9 80 9 80/ h h,. − − = . − .  with h in meters. 

210 (4 00 )(109 8 9 80 )h h= . − . − .  

29 80 149 229 2 0h h. − + . =  and 2 15 20 23 39 0h h− . + . =  

quadratic formula: ( )21
2

15 20 (15 20) 4(23 39) (7 60 5 86) mh = . ± . − . = . ± .  

h must be less than 4.00 m, so the only acceptable value is 7 60 m 5 86 m 1 74 mh = . − . = .  

EVALUATE:   The flow stops when 1 2( )p g y yρ+ −  equals air pressure. For 1 74 m,h = .  49 3 10  Pap = . ×  

and 4
1 2( ) 0 7 10  Pa,g y yρ − = . ×  so 5

1 2( ) 1 0 10  Pa,p g y yρ+ − = . ×  which is air pressure. 





 18.73. IDENTIFY and SET UP:   At equilibrium ( ) 0F r = .  The work done to increase the separation from r2 to ∞  

is 2( ) ( ).U U r∞ −  

(a) EXECUTE:   
12 6

0 0 0( ) [( ) 2( ) ]U r U R /r R /r= −  

Eq. (14.26): 
13 7

0 0 0 0( ) 12( )[( ) ( ) ].F r U /R R /r R /r= −  The graphs are given in Figure 18.73. 
 

 

Figure 18.73 
 

(b) equilibrium requires 0;F =  occurs at point 2r .  2r  is where U is a minimum (stable equilibrium). 

(c) 0U =  implies 
12 6

0 0[( / ) 2( / ) ] 0R r R r =  

6
1 0( / ) 1/2r R =  and 

1/6
1 0/(2)r R=  

0F =  implies 
13 7

0 0[( / ) ( / ) ] 0R r R r− =  

6
2 0( / ) 1r R =  and 2 0r R=  

Then 
1/6 1/6

1 2 0 0/ ( /2 )/ 2r r R R
−= =  

(d) otherW U= ∆  

At ,r → ∞  0,U =  so 12 6
0 0 0 0 0 0 0( ) [( / ) 2( / ) ]W U R U R R R R U= − = − − = +  

EVALUATE:   The answer to part (d), 0 ,U  is the depth of the potential well shown in the graph of ( )U r .  

= 3=





 18.82. IDENTIFY:   The equipartition principle says that each molecule has average kinetic energy of 1
2

kT for 

each degree of freedom. 22 ( 2) ,I m L/=  where L is the distance between the two atoms in the molecule. 

21
rot 2

.K Iω= 2
rms av( ) .ω ω=  

SET UP:   The mass of one atom is 
3 23

A/ (16 0 10  kg/mol)/(6 022 10  molecules/mol)m M N
−= = . × . × =  

262 66 10  kg.−. ×  

EXECUTE:   (a) The two degrees of freedom associated with the rotation for a diatomic molecule account for 

two-fifths of the total kinetic energy, so 3
rot (1 00 mol)(8 3145 J/mol K)(300 K) 2 49 10 J.K nRT= = . . ⋅ = . ×  

(b) 
3

2 11 2 46 2

23

16 0 10 kg/mol
2 ( /2) 2  (6 05 10 m) 1 94 10 kg m

6 022 10 molecules/mol
I m L

−
− −

 . ×
= =  . × = . × ⋅  . × 

 

(c) Since the result in part (b) is for one mole, the rotational kinetic energy for one atom is rot AK /N and 

3
12rot A

rms 46 2 23

2 2(2 49 10  J)
6 52 10 rad s.

(1 94 10  kg m )(6 022 10  molecules/mol)

K /N
/

I
ω

−

. ×
= = = . ×  

. × ⋅ . ×
 This is 

much larger than the typical value for a piece of rotating machinery. 

EVALUATE:   The average rotational period, 
rms

2  rad
,T

π

ω
=  for molecules is very short. 

( )1=





 18.91. IDENTIFY:   Eq. (18.21) gives the mean free path .λ  In Eq. (18.20) use rms

3RT
v

M
= in place of .υ  

.pV nRT NkT= =  The escape speed is escape

2
.

GM
v

R
=  

SET UP:   For atomic hydrogen, 3
1 008 10  kg/mol.M

−= . ×  

EXECUTE:   (a) From Eq. (18.21), 
2 1 11 2 6 3 1 11(4 2 ( / )) (4 2(5 0 10 m) (50 10 m )) 4 5 10 m.r N Vλ π π− − − −= = . × × = . ×  

(b) 
3

rms 3 3(8 3145 J mol K)(20 K) (1 008 10 kg mol) 703 m s,v RT/M / / / /
−= = . ⋅ . × =  and the time between 

collisions is then 11 8(4 5 10 m) (703 m s) 6 4 10 s,/ /. × = . × about 20 yr. Collisions are not very important. 

(c) 
6 3 23 14

( ) (50 1 0 10 m )(1 381 10 J K)(20 K) 1 4 10 Pa.p N/V kT / /
− − −= = . × . × = . ×  

(d) 
3

2
escape

2 2 ( )(4 /3)
(8 3) ( )

GM G Nm/V R
v / G N/V mR

R R

π
π= = =  

11 2 2 6 3 27 15 2
escape (8 /3)(6 673 10  N m /kg )(50 10  m )(1 67 10  kg)(10 9 46 10  m)v π − − −= . × ⋅ × . × × . ×  

escape 650 m s.v /=  This is lower than rmsv and the cloud would tend to evaporate. 

(e) In equilibrium (clearly not thermal equilibrium), the pressures will be the same; from ,pV NkT=  

ISM ISM nebula nebula( ) ( )kT N/V kT N/V=  and the result follows. 

(f) With the result of part (e), 

6 3
5nebula

ISM nebula 6 3 1
ISM

( / ) 50 10  m
(20 K) 2 10  K,

( / ) (200 10  m )

N V
T T

N V − −

   ×
= = = ×    ×   

 

more than three times the temperature of the sun. This indicates a high average kinetic energy, but the 

thinness of the ISM means that a ship would not burn up. 

EVALUATE:   The temperature of a gas is determined by the average kinetic energy per atom of the gas. 

The energy density for the gas also depends on the number of atoms per unit volume, and this is very small 

for the ISM. 

α= −







19.35. IDENTIFY:   Combine 
1 1

1 21 2TV T V
γ γ− −= with pV nRT= to obtain an expression relating T and p for an 

adiabatic process of an ideal gas. 

SET UP:   1 299 15 KT = .  

EXECUTE:   
nRT

V
p

=  so 

1 1

1 2
1 2

1 2

nRT nRT
T T

p p

γ γ− −
   

=   
   

and 1 2
1 1

1 2

T T

p p

γ γ

γ γ− −
= .  

0 4/1 4( 1)/ 5
2

2 1 5
1

0 850 10  Pa
(299 15 K) 284 8 K 11 6 C

1 01 10  Pa

p
T T

p

γ γ . .−
   . ×

= = . = . = . °    . ×   
 

EVALUATE:   For an adiabatic process of an ideal gas, when the pressure decreases the temperature 

decreases. 
γ γ



decreases. 

19.36. IDENTIFY:   pV nRT= For an adiabatic process, 1 1
1 21 2TV T Vγ γ− −= .  

SET UP:   For an ideal monatomic gas, 5/3γ = .  

EXECUTE:   (a) 
5 3 3(1 00 10  Pa)(2 50 10  m ) 

301 K
(0 1 mol)(8 3145 J/mol K) 

pV
T

nR

−. × . ×
= = = .

. . ⋅
 

(b) (i) Isothermal: If the expansion is isothermal, the process occurs at constant temperature and the final 

temperature is the same as the initial temperature, namely 301 K.  41
2 1 1 2 12

( / ) 5 00 10  Pap p V V p= = = . × .  

(ii) Isobaric: 0p∆ =  so 5
2 1 00 10  Pap = . × .  2 1 2 1 1( / ) 2 602 KT T V V T= = = .  

(iii) Adiabatic: Using Eq. (19.22), ( )
1 0 67

0 671 11 1
2 1 0 67 2

12

(301 K)( )
(301 K) 189 K

(2 )

TV V
T

V V

γ

γ

− . .

− .
= = = = . Then 

pV nRT= gives 4
2 3 14 10  Pap = . × .  

EVALUATE:   In an isobaric expansion, T increases. In an adiabatic expansion, T decreases. 

19.37. IDENTIFY:   The compression does work on the gas, but the heat transferred and the internal energy change 













 19.68. IDENTIFY:   Use the appropriate expression for W for each type of process. 

SET UP:   For a monatomic ideal gas, 5/3γ = and 3 /2VC R= .  

EXECUTE:   (a) 3
2 1 ln( / ) ln(3) 3.29 10  J.W nRT V V nRT= = = ×  

(b) 0Q =  so .VW U nC T= −∆ = − ∆  
1 1

1 21 2TV T V
γ γ− −= gives 

2/3
2 1(1/3) .T T=  Then 

2/3 3
1(1 (1/3 )) 2.33 10  J.VW nC T= − = ×  

(c) 2 13 ,V V=  so 3
1 12 2 6 00 10  JW p V pV nRT= ∆ = = = . × .  

(d) Each process is shown in Figure 19.68. The most work done is in the isobaric process, as the pressure is 

maintained at its original value. The least work is done in the adiabatic process. 

(e) The isobaric process involves the most work and the largest temperature increase, and so requires the 

most heat. Adiabatic processes involve no heat transfer, and so the magnitude is zero. 

(f) The isobaric process doubles the Kelvin temperature, and so has the largest change in internal energy. 

The isothermal process necessarily involves no change in internal energy. 

EVALUATE:   The work done is the area under the path for the process in the pV-diagram. Figure 19.68 

shows that the work done is greatest in the isobaric process and least in the adiabatic process. 
 

 
Figure 19.68 

 


