Kinetic-molecular model of an ideal gas: In an ideal gas,
the total translational kinetic energy of the gas as a
whole (K,,) and the average translational kinetic energy
per molecule [2m(v?),, ] are proportional to the
absolute temperature 7, and the root-mean-square speed
of molecules is proportional to the square root of 7.
These expressions involve the Boltzmann constant

k = R/Nj. (See Examples 18.6 and 18.7.)

The mean free path A of molecules in an ideal gas
depends on the number of molecules per volume (N/V)
and the molecular radius r. (See Example 18.8.)

Heat capacities: The molar heat capacity at constant
volume Cy is a simple multiple of the gas constant R
for certain idealized cases: an ideal monatomic gas [Eq.
(18.25)]; an ideal diatomic gas including rotational
energy [Eq. (18.26)]; and an ideal monatomic solid [Eq.
(18.28)]. Many real systems are approximated well by
these idealizations.

Molecular speeds: The speeds of molecules in an
ideal gas are distributed according to the Maxwell—-
Boltzmann distribution f(v). The quantity f(v) dv
describes what fraction of the molecules have speeds
between v and v + dv.

Ky = 3nRT (18.14)

1 2y _ 3

5m(v°)ay = 5kT (18.16)
3kT

Uims = V(0w = +/—  (18.19)
m

A=t S (18.21)

T 4n V2N '
Cy= %R (monatomic gas) (18.25)
Cy= %R (diatomic gas) (18.26)

Cy=3R (monatomic solid) (18.28)

m 32 2 —mv?
_ —mv?/2kT
f(v) 47T<27TkT> Ve

(18.32)
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3. A sample of ideal gas expands from an initial pressure and volume of 32 atm
and 1.0 L to a final volume of 4.0 L. The initial temperature of the gas is 300
K. What are the final pressure and temperature of the gas and how much work
is done by the gas during the expansion, if the expansion is (a) isothermal, (b)
adiabatic and the gas is monatomic, and (c) adiabatic and the gas is diatomic?



(a) Using the ideal gas law for isothermal expansion,
pV = constant.

Final pressure

=32 x% = 8atm. (answer)

Final temperature = 300 K (answer)
Work done by the gas

Vi Vi 5103
=nRT1n7=pl.Vi 1n7=32><1.013><10 x107 In4 =4,494]. (answer)

1 1

(b) For monatomic gases, Cy=3R/2, Cp=5R/2, y= Cp/Cy=5/3.
pV?’” = constant.
Final pressure

5/3
= 32(%} =3.1748 = 3.17 atm. (answer)

Since TV’ = constant,
final temperature

1 5/3-1
= 300[2) =119 K. (answer)

Work done by the gas
v, V7 v v, Vv v
:I“//fpdV:J pl—’dV:_ pl i _l| :P, i pf f
; v \v&4 (y -1V’ ‘Vi y—1

32x1.013x10° x 107 —3.1748x1.013x10% x4x107>
5/3-1

=2,933]J. (answer)

(c) For diatomic gases, Cy=5R/2, Cp=TR/2, y= Cp/Cy="1/5.
Final pressure

7/5
= 32(%) =4.5948 ~ 4.59 atm. (answer)

Final temperature
1 7/5-1
= 300(1) =284 K. (answer)
Work done by the gas
_ 32x1.013x10° x107° —4.5948x1.013x10° x4x10™>
7/5-1

=3,449J. (answer)



4. One mole of an ideal monatomic gas traverses the cycle shown in Fig. 3.
Process 1 — 2 takes place at constant volume, process 2 — 3 is adiabatic, and
process 3 — 1 takes place at constant pressure. (a) Compute the heat Q, the
change in internal energy AE;,, and the work done W, for each of the three
processes and for the cycle as a whole. (b) If the initial pressure at point 1 is
1.00 atm, find the pressure and the volume at points 2 and 3. Use 1.00 atm =
1.013 x 10° Pa and R = 8.314 J/mol-K.

I, =900 K
2e

« Adiabatic

Pressure

| O s I

f Rl § Ta .
I — I (to be determined)

Volume

Fig. 3



Suppose at point 1, the pressure, volume and temperature are p;, V| and T}
respectively.

Then at point 2, the pressure, volume and temperature are p,7>/T;, V| and T,
respectively.

Similarly, at point 3, the pressure, volume and temperature are p;, V,75/T; and
T; respectively.

Since process 2 — 3 is adiabatic, we have

Tzvly_l = T3(VlT3/Tl)Y_1 = T2/T1 = (T3/T1)y.

For monatomic gases, Cy =3R/2, Cp=5R/2, y= Cp/Cy=5/3.

Therefore, T5 = Ty(T»/T;)""" = 300(900/300)*” = 580.0 K.

Process 1 — 2:

W=0,0=AEn=nCyAT=1 x 1.5 x 8.314(900 — 300) = 7,483 J. (answers)

Process 2 — 3:

0=0,

W= pVi—p;V, nRT,—nRT, 1x8314(900-580)
y—1 y—1 5/3-1

(see the solution to Problem 3 for derivation of this formula)

AEp=—W =-3,991 J. (answers)

Process 3 — 1:

Q=nCpAT=1x2.5x%8.314(300 — 580) =-5,820 J.

W =pi(Vi— V) =nR(T;—T;) = 1 x 8.314(300 — 580) =—2,328 J.

AEin:=Q — W =-3,492 J. (answers)

The cycle:

0=17,483+0-5,820=1,663 1.

AEy = 7,483 —3,991 —3,492=01.

W=0+3,991-2,328=1,663 J. (answers)

=3,9911,



5. An insulated cylinder with a piston contains 4 g of helium and 16 g of oxygen,
as shown in Fig. 4. The temperature is 0°C and the pressure is 10° Pa. If the
piston is pressed to make the pressure increase to 2 x 10° Pa, find the
temperature and the volume of the gases in the cylinder.

Helium: Cy, = 12.3 J/mol-K, Cp;, = 20.5 J/mol-K
Oxygen: Cyp = 20.5 J/mol‘K, Cpp = 28.7 J/mol-K

Fig. 4



There are 1 mol of helium and 0.5 mol of oxygen. Hence the average molar
specific heat at constant volume is

%x 12.3 +%>< 20.5=15.033J mol 'K,

and the average molar specific heat at constant pressure is

% x20.5 + % x28.7=28.233J mol 'K,

Hence the average specific heat ratio is y = 28.233/15.033 = 1.5455.

For adiabatic expansion of the ideal gas mixture, we have pV' = constant and
TV'! = constant, where y is the average specific heat ratio. To see that this is
the case, please refer to the lecture notes on the derivation of the adiabatic gas
law. There you should use the average molar specific heat at constant volume
and constant pressure in place of Cy and Cp respectively.

Initial volume

_ nRT _1.5x8.314x273

p 10°
Final volume

=0.03405m’ =34.05L.

1

p. ) 115455
=V.|—| =34.05 5 =21.74 L. (answer)

Py
Final temperature

”
_r| 2L P o7 2L T4 2] 349k (answer)
V. \ p; 34.05 \ 1




18.24 -» Modern vacuum pumps make it easy to attain pressures of
the order of 10~!® atm in the laboratory. Consider a volume of air and
treat the air as an ideal gas. (a) At a pressure of 9.00 X 107 atm
and an ordinary temperature of 300.0 K, how many molecules are
present in a volume of 1.00 cm>? (b) How many molecules would
be present at the same temperature but at 1.00 atm instead?

18.25 - The Lagoon Nebula (Fig. E18.25) is a cloud of hydrogen
gas located 3900 light-years from the earth. The cloud is about 45
light-years in diameter and glows because of its high temperature

of 7500 K. (The gas is raised to this temperature by the stars that
lie within the nebula.) The cloud is also very thin; there are only 80

molecules per cubic centimeter. (a) Find the gas pressure (in
atmospheres) in the Lagoon Nebula. Compare it to the laboratory
pressure referred to in Exercise 18.24. (b) Science-fiction films
sometimes show starships being buffeted by turbulence as they fly
through gas clouds such as the Lagoon Nebula. Does this seem
realistic? Why or why not?

Figure E18.25

..;'A"_-




18.24. IDENTIFY: Use pV =nRT to calculate the number of moles and then the number of molecules would be

N = I’LNA.
SETUP: 1atm=1.013x10° Pa. 1.00 cm® =1.00x107° m®. N, =6.022x10* molecules/mol.

—14 S5 -6 3
pV _ (9.00x10" " atm)(1.013x10” Pa/atm)(1.00x10"" m~) ~3.655%10~'% mol.

EXECUTE: (a) n=—
RT (8.314 J/mol - K)(300.0 K)
N =nN, =(3.655x107'® mol)(6.022x10* molecules/mol) = 2.20x10° molecules.
(b) N :m SO E :VN—A = constant and & :&.
p RT I )
1.00 atm

N, =N, (&J =(2.20x10° molecules)( J =2.44x10" molecules.

P 9.00x107'* atm
EVALUATE: The number of molecules in a given volume is directly proportional to the pressure. Even at

the very low pressure in part (a) the number of molecules in 1.00 cm’ is very large.



18.25.

IDENTIFY: We are asked about a single state of the system.
SET UP: Use the ideal-gas law. Write # in terms of the number of molecules N.
(a) EXECUTE: pV =nRT, n=N/N, so pV =(N/N,)RT

V)N,
B (80 moleculesj( 8.3145 J/mol - K

- 1x107% m? 6.022x10%> molecules/mol

p=82X 1077 atm. This is much lower than the laboratory pressure of 9 x 107 atm in Exercise 18.24.

j(7500 K)=8.28x10""? Pa

(b) EVALUATE: The Lagoon Nebula is a very rarefied low pressure gas. The gas would exert very little
force on an object passing through it.



18.28 - How Close Together Are Gas Molecules? Consider
an ideal gas at 27°C and 1.00 atm pressure. To get some idea how
close these molecules are to each other, on the average, imagine
them to be uniformly spaced, with each molecule at the center of a
small cube. (a) What is the length of an edge of each cube if adja-
cent cubes touch but do not overlap? (b) How does this distance
compare with the diameter of a typical molecule? (c) How does
their separation compare with the spacing of atoms in solids,
which typically are about 0.3 nm apart?



18.28. IDENTIFY: Use pV =nRT and n= ;}L with N =1to calculate the volume V occupied by 1 molecule.
A

The length [ of the side of the cube with volume V'is given by V =1 3,
SETUP: T =27°C=300K. p=1.00atm=1.013x10° Pa. R=8.314 J/mol-K.

N, =6.022x10* molecules/mol.

The diameter of a typical molecule is about 107 m. 0.3 nm=0.3%10"" m.

EXECUTE: (a) pV =nRT and n= Ni gives
A

Ve NRT (1.00)(8.314 J/mol - K)(300 K)

Nap  (6.022x10* molecules/mol)(1.013x10° Pa)
(b) The distance in part (a) is about 10 times the diameter of a typical molecule.
(c) The spacing is about 10 times the spacing of atoms in solids.

EVALUATE: There is space between molecules in a gas whereas in a solid the atoms are closely packed
together.

=4.09%1072° m>, 1=v3=3.45%x10"° m.




18.37 -+ (a) Oxygen (O,) has a molar mass of 32.0 g/mol. What
is the average translational kinetic energy of an oxygen molecule
at a temperature of 300 K? (b) What is the average value of the
square of its speed? (c) What is the root-mean-square speed? (d)
What is the momentum of an oxygen molecule traveling at this
speed? (e) Suppose an oxygen molecule traveling at this speed
bounces back and forth between opposite sides of a cubical vessel
0.10 m on a side. What is the average force the molecule exerts on
one of the walls of the container? (Assume that the molecule’s
velocity 1s perpendicular to the two sides that it strikes.) (f) What
1s the average force per unit area? (g) How many oxygen mole-
cules traveling at this speed are necessary to produce an average
pressure of 1 atm? (h) Compute the number of oxygen molecules
that are actually contained in a vessel of this size at 300 K and
atmospheric pressure. (i) Your answer for part (h) should be three
times as large as the answer for part (g). Where does this discrep-
ancy arise?



18.37.  IDENTIFY and SET UP: Apialy the analysis of Section 18.3.
EXECUTE: (a) 2m(v?),, =3kT =3(1.38x10™ J/molecule-K)(300 K)=6.21x107>" J
(b) We need the mass m of one molecule:
M _ 320107 kg/mol
Na  6.022x10% molecules/mol

Then %m(vz)aV =6.21x1072" ] (from part (a)) gives

=5.314x107%6 kg/molecule

21 21
() = 2(6.21x107' 1) _ 2(6.21><1026 D o 3u 105 w2
m 5.314x1072° kg

(©) Voms =y () =2.34x10* m2/s =484 m/s

(d) p=mv,,, =(5314x1072° kg)(484 m/s) =2.57x107> kg-m/s
020m 020 m
ms 484 m/s

=2(2.57x107%% kg-m/s) =5.14x107> kg-m/s

(e) Time between collisions with one wall is ¢ = =4.13x107* s

v

In a collision ¥ changes direction, so Ap =2mv,
23 1.
de_p s Fava_p=5.14><10 1_<4g n/s
dt At 413x107" s
(f) pressure = F/4=1.24x107"" N/(0.10 m)? =1.24x107'7 Pa (due to one molecule)

=1.24x107° N

(g) pressure=1atm = 1.013x10° Pa
Number of molecules needed is 1.013x10° Pa/(1.24x 1071 Pa/molecule) =8.17 10%! molecules

PV _ (1.013x10° Pa)(0.10 m)*

=2.45%10%* molecules
kT (1.381x107% J/molecule- K)(300 K)

(h) pV = NkT (Eq. 18.18),s0 N =

(i) From the factor of % in (vi )av = %(v2 )ay-

EVALUATE: This exercise shows that the pressure exerted by a gas arises from collisions of the molecules
of the gas with the walls.

A AAN 1 1 1 ]



18.43 -- (a) Compute the specific heat at constant volume of nitro-
gen (N,) gas, and compare it with the specific heat of liquid water.
The molar mass of N, is 28.0 g/mol. (b) You warm 1.00 kg of
water at a constant volume of 1.00 L from 20.0°C to 30.0°C in a
kettle. For the same amount of heat, how many kilograms of
20.0°C air would you be able to warm to 30.0°C? What volume (in
liters) would this air occupy at 20.0°C and a pressure of 1.00 atm?
Make the simplifying assumption that air is 100% N,.



18.43.

IDENTIFY: C = Mec, where Cis the molar heat capacity and c is the specific heat capacity.
pV =nRT =L RT.
M

SETUP: My =2(14.007 g/mol) = 28.014x10™° kg/mol. For water, ¢,, = 4190 J/kg-K. For N,,
Cy =20.76 J/mol - K.

c__ 2076 J/n;ol K 741 J/kg - K. Sw o 5.65; ¢, is over five time larger.
M 28.014x10™ kg/mol CN,

(b) To warm the water, Q =mc, AT =(1.00 kg)(4190 J/mol-K)(10.0 K) = 4.19%x10* J. For air,

_ 0 419x10%) 56
oN, AT (741 J/kg-K)(10.0 K)
mRT _ (5.65 kg)(8.314 J/mol - K)(293 K)
Mp (28.014x107 kg/mol)(1.013x10° Pa)
EVALUATE: c is smaller for N,, so less heat is needed for 1.0 kg of N, than for 1.0 kg of water.

EXECUTE: (a) N, =

m 5 kg.

V= =4.85m>.




Bernoulli’s equation

* Bernoulli’s equation is:

P+ pgy + 172 pvi2 =p, + pgy, + 1/2 pv,?

* It is due to the fact that the work done
on a unit volume of fluid by the
surrounding fluid is equal to the sum of
the changes in kinetic and potential
energies per unit volume that occur
during the flow.




18.87 -+ A cylinder 1.00 m tall with inside diameter 0.120 m is
used to hold propane gas (molar mass 44.1 g/mol) for use in a bar-
becue. It is initially filled with gas until the gauge pressure is
1.30 X 10° Pa and the temperature is 22.0°C. The temperature of
the gas remains constant as it is partially emptied out of the tank,
until the gauge pressure is 2.50 X 10° Pa. Calculate the mass of
propane that has been used.

18.65 -« CP A large tank of
water has a hose connected to it, Figure P18.65

as shown in Fig. P18.65. The +~ £ >
tank is sealed at the top and has —p
M

compressed air between the 400
water surface and the top. When o
. h
the water height 4 has the value ﬁ—ﬂ
3.50 m, the absolute pressure I B —— v
P o D 1.00 m

of the compressed air is 4.20 X

10°> Pa. Assume that the air

above the water expands at constant temperature, and take the
atmospheric pressure to be 1.00 X 10° Pa. (a) What is the speed
with which water flows out of the hose when 2 = 3.50 m? (b) As
water flows out of the tank, 4 decreases. Calculate the speed of

flow for 4 = 3.00 m and for # = 2.00 m. (c) At what value of &
does the flow stop?




18.57.

IDENTIFY: We are asked to compare two states. Use the ideal-gas law to obtain m, in terms of m; and the
ratio of pressures in the two states. Apply Eq. (18.4) to the initial state to calculate m;.
SETUP: pV =nRT can be written pV =(m/M)RT

T, V, M, R are all constant, so p/m = RT/MV = constant.

So p,/my = p,/m,, where m is the mass of the gas in the tank.
EXECUTE: p, =1.30x10° Pa+1.01x10°> Pa =1.40x10° Pa

Py =2.50x10° Pa+1.01x10° Pa=3.51x10" Pa

my = pVMIRT; V =hA = hzr* = (1.00 m)7(0.060 m)* =0.01131 m*
_(1.40x10° Pa)(0.01131 m?)(44.1x10 kg/mol)

- —0.2845 kg
(83145 J/mol- K)((22.0+ 273.15)K)
5
Then m, = my| 22 | = (0.2845 kg)| 22210 P2 | 0713 kg,
P 1.40x10° Pa

m, is the mass that remains in the tank. The mass that has been used is
my —m, =0.2845 kg —0.0713 kg = 0.213 kg.

EVALUATE: Note that we have to use absolute pressures. The absolute pressure decreases by a factor of
four and the mass of gas in the tank decreases by a factor of four.



18.65.

IDENTIFY: Apply Bernoulli’s equation to relate the efflux speed of water out the hose to the height of
water in the tank and the pressure of the air above the water in the tank. Use the ideal-gas equation to relate
the volume of the air in the tank to the pressure of the air.

(a) SET Up: Points 1 and 2 are shown in Figure 18.65.

P, =4.20x10° Pa
Py = par =1.00x10° Pa

large tank implies v; =0
ho=350m

Figure 18.65

2 2
EXECUTE:  p;+pgy +5 PV = pa+ P8y +5 v

1pvi=pi=pr+pe(yi =)

vy =\@IP)(py = p2) +28(31~ ¥2)
v, =26.2 m/s
(b) A=3.00 m
The volume of the air in the tank increases so its pressure decreases. pV =nRT =constant, so pV = p,V,
(po 1s the pressure for iy =3.50 m and p is the pressure for & =3.00 m)
p(4.00 m—h)A = py(4.00 m—hy)A
P=p [M] =(4.20x10° Pa)(wj =2.10x10° Pa
4.00 m—h 4.00 m~-3.00 m
Repeat the calculation of part (a), but now p; =2.10x10° Pa and y; =3.00 m.

v, =y 2Ip)(py = o) +28 (¥ — ¥2)

v, =16.1m/s

h=2.00m

P=p Mj: (4.20x10° Pa) Mj:mm& Pa
400 m—h 4.00 m—2.00 m

vy =[Q2Ip)(p1 = p2)+28(3 — ¥2)

v, =5.44 m/s

(¢) v, =0 means (2/p)(p;—p,)+2g(y;—y,)=0
Pi— Py =—P8(yi—¥2)

V=Y, =h-1.00m
0.50 m s 0.50 m .
= ——— |=(4.20%x10° Pa)] ——— |. Thisis p,, so
P p0(4.00m—h] ¢ )(4.00m—hj P

0.50 m

(4.20x10° Pa)[4 j—1.00><105 Pa = (9.80 m/s*)(1000 kg/m*)(1.00 m— h)

00 m—h
(210/(4.00 — h)) — 100 =9.80—9.80%, with 4 in meters.
210=(4.00— 7)(109.8 —9.80h)

9.80h> —1494h+229.2=0 and h>—15.20h+23.39=0

quadratic formula: h = %(15.20 4 (15.20)2 — 4(23.39)) =(7.60%£5.86) m

h must be less than 4.00 m, so the only acceptable value is 7 =7.60 m—5.86 m=1.74 m
EVALUATE: The flow stops when p+ pg(y; —y,) equals air pressure. For h=1.74m, p= 9.3x10* Pa

and pg(y;—y)= 0.7x10* Pa, so p+pg(y1—y2) =1.0x10° Pa, which is air pressure.



18.73 -+ CP, CALC The Lennard-Jones Potential. A commonly
used potential-energy function for the interaction of two molecules
(see Fig. 18.8) is the Lennard-Jones 6-12 potential:

o=l(3) (2

where r is the distance between the centers of the molecules and
Uy and R are positive constants. The corresponding force F(r) is
given in Eq. (14.26). (a) Graph U(r) and F(r) versus r. (b) Let ry
be the value of r at which U(r) = 0, and let r, be the value of r at
which F(r) = 0. Show the locations of r; and r, on your graphs of
U(r) and F(r). Which of these values represents the equilibrium
separation between the molecules? (c¢) Find the values of r; and r,
in terms of R, and find the ratio ry/r,. (d) If the molecules are
located a distance r, apart [as calculated in part (c)], how much
work must be done to pull them apart so that r — 00?



18.73.

IDENTIFY and SET UP: At equilibrium F(r)=0. The work done to increase the separation from r, to oo
i1s U(e0)=U(1,).

(a) EXECUTE: U (r) =Uy[(Ry/r)"* = 2(Ry/r)°]

Eq. (14.26): F(r)=12(Uy/Ry)[(Ry/r)"* = (Ry/r)"]. The graphs are given in Figure 18.73.

U F

r
| !':.! r! r.]

| : L\
! |

\'/'

Figure 18.73

(b) equilibrium requires F =0; occurs at point 7,. r, is where U is a minimum (stable equilibrium).
(¢) U =0 implies [(Ry/r)'*2(Ry/r)®1=0

(n/Ry)® =1/2 and r, = Ry/(2)"

F =0 implies [(Ry/r)"> = (Ry/r)'1=0

(r/Ry)° =1 and r, = R,

Then 5/r, = (Ry/2"®)/Ry =271/

(d) Woper =AU

At r—oo, U=0, so W=-U(Ry)=-Uyl(Ry/Ry)"> —2(Ry/Ry)°1=+U,,
EVALUATE: The answer to part (d), U, is the depth of the potential well shown in the graph of U (7).



18.82 <~ (a) Calculate the total rotational kinetic energy of the
molecules in 1.00 mol of a diatomic gas at 300 K. (b) Calculate the
moment of inertia of an oxygen molecule (O,) for rotation about
either the y- or z-axis shown in Fig. 18.18b. Treat the molecule as
two massive points (representing the oxygen atoms) separated by a
distance of 1.21 X 107'%m. The molar mass of oxygen aroms is
16.0 g/mol. (c¢) Find the rms angular velocity of rotation of an oxy-
gen molecule about either the y- or z-axis shown in Fig. 18.18b.
How does your answer compare to the angular velocity of a typical
piece of rapidly rotating machinery (10,000 rev/min)?



18.82.

IDENTIFY: The equipartition principle says that each molecule has average kinetic energy of %kT for

each degree of freedom. I =2m(L/ 2)2, where L is the distance between the two atoms in the molecule.

_17,2 _ o2
Koo =510° Wy =[(@7 )y, .

SET UP: The mass of one atom is m=M/N, = (16.0x 107 kg/mol)/(6.022 % 102 molecules/mol) =

2.66x107%0 kg.
EXECUTE: (a) The two degrees of freedom associated with the rotation for a diatomic molecule account for

two-fifths of the total kinetic energy, so K, = nRT = (1.00 mol)(8.3145 J/mol- K)(300 K) = 2.49 x 10° 7.
16.0x10 kg/mol

6.022x10%> molecules/mol

(¢) Since the result in part (b) is for one mole, the rotational kinetic energy for one atom is K, /N and

3
Ops = ,/ZKfOt/ Na _ s 2(22‘49 <1077 )23 =6.52x10'% rad/s. This is
1 (1.94 %107 kg-m~)(6.022 x 10~ molecules/mol)

much larger than the typical value for a piece of rotating machinery.
27 rad

(b) I =2m(L/2)* =2 (6.05x107"" m)? =1.94x107* kg - m>

EVALUATE: The average rotational period, T = , for molecules is very short.

rms



18.91 +» CP Dark Nebulae and the Interstellar Medium.
The dark area in Fig. P18.91 that appears devoid of stars is a dark
nebula, a cold gas cloud in interstellar space that contains enough
material to block out light from the stars behind it. A typical dark
nebula is about 20 light-years in diameter and contains about 50
hydrogen atoms per cubic centimeter (monatomic hydrogen, not H,)
at a temperature of about 20 K. (A light-year is the distance light
travels in vacuum in one year and is equal to 9.46 X 101 m.) (a)
Estimate the mean free path for a hydrogen atom in a dark nebula.
The radius of a hydrogen atom is 5.0 X 10! m. (b) Estimate the
rms speed of a hydrogen atom and the mean free time (the average
time between collisions for a given atom). Based on this result, do
you think that atomic collisions, such as those leading to H, mole-
cule formation, are very important in determining the composition
of the nebula? (c) Estimate the pressure inside a dark nebula. (d)
Compare the rms speed of a hydrogen atom to the escape speed at
the surface of the nebula (assumed spherical). If the space around
the nebula were a vacuum, would such a cloud be stable or would
it tend to evaporate? (e) The stability of dark nebulae is explained
by the presence of the interstellar medium (ISM), an even thinner
gas that permeates space and in which the dark nebulae are embed-
ded. Show that for dark nebulae to be in equilibrium with the ISM,
the numbers of atoms per volume (N/V) and the temperatures (7)
of dark nebulae and the ISM must be related by

(N/V)nebula . TISM
(N/V)ISM Tnebula

(f) In the vicinity of the sun, the ISM contains about 1 hydrogen
atom per 200 cm’. Estimate the temperature of the ISM in the
vicinity of the sun. Compare to the temperature of the sun’s sur-
face, about 5800 K. Would a spacecraft coasting through interstel-
lar space burn up? Why or why not?

Figure P18.91




18.91. IDENTIFY: Eq. (18.21) gives the mean free path A. In Eq. (18.20) use v, =, f% in place of v.
pV =nRT = NkT. The escape speed is Vegeqpe = ZGTM

SET UP: For atomic hydrogen, M = 1.008x107° kg/mol.
EXECUTE: (a) From Eq. (18.21),
A=@aN2r2(NIV) ' = (4z2(5.0x 107 m)2(50x10° m ) ' =4.5%x 10! m.

(b) vs =V3RT/M = \/3(8.3 145 J/mol - K)(20 K)/(l.008><10_3 kg/mol) =703 m/s, and the time between
collisions is then (4.5><1011 m)/ (703 m/s) = 6.4x10% s, about 20 yr. Collisions are not very important.
(€) p=(N/V)KT =(50/1.0x107° m*)(1.381x107% J/K)(20 K) =1.4x10"'* Pa.

3
(d) Vescape =+ 2?4 = \/ 2GINmVIATRT) _ [(872/3)G(NVIMR?

R

Vescape = J(87/3)(6.673x107"" N-m%/kg?)(50x10° m™)(1.67x1072" kg)(10x9.46x10"> m)?
v =650 m/s. This is lower than v

escape ms and the cloud would tend to evaporate.

(e) In equilibrium (clearly not thermal equilibrium), the pressures will be the same; from pV = NkT,
kTign (N/V ) ism = kT pepuia (V/V ) nebuta @nd the result follows.
(f) With the result of part (e),

6 3
Tism = Thebula [M] =(20K) [ S0x10" m \]: 2x10° K,

(NIV )ism (200%107% m?)~!

more than three times the temperature of the sun. This indicates a high average kinetic energy, but the
thinness of the ISM means that a ship would not burn up.

EVALUATE: The temperature of a gas is determined by the average kinetic energy per atom of the gas.
The energy density for the gas also depends on the number of atoms per unit volume, and this is very small
for the ISM.



Thermodynamics of ideal gases: The internal energy of
an ideal gas depends only on its temperature, not on its
pressure or volume. For other substances the internal
energy generally depends on both pressure and
temperature.

The molar heat capacities Cy and C,, of an ideal gas
differ by R, the ideal-gas constant. The dimensionless
ratio of heat capacities, C,/Cy, is denoted by y. (See
Example 19.6.)

Adiabatic processes in ideal gases: For an adiabatic
process for an ideal gas, the quantities TV? ! and pV?”
are constant. The work done by an ideal gas during an
adiabatic expansion can be expressed in terms of the
initial and final values of temperature, or in terms of the
initial and final values of pressure and volume. (See
Example 19.7.)

Cp:CV+R
_ S
ey

W = nCy(T; — B)

Cy
= X(prl — poVs)

1

T PtV — paYa)

(18.17)

(19.18]

(19.25])

(19.26)

p| T T +dT
Pal~— . .
Adiabatic process a — b:
0=0AU=—-W
Pp-———=—==
W
0 V, V,




19.35 ¢» On a warm summer day, a large mass of air (atmospheric
pressure 1.01 X 10° Pa) is heated by the ground to a temperature
of 26.0°C and then begins to rise through the cooler surrounding
air. (This can be treated approximately as an adiabatic process;
why?) Calculate the temperature of the air mass when it has risen
to a level at which atmospheric pressure is only 0.850 X 10° Pa.
Assume that air is an ideal gas, with vy = 1.40. (This rate of cool-
ing for dry, rising air, corresponding to roughly 1°C per 100 m of
altitude, is called the dry adiabatic lapse rate.)

19.36 - A cylinder contains 0.100 mol of an ideal monatomic gas.
Initially the gas is at a pressure of 1.00 X 10° Pa and occupies a
volume of 2.50 X 10~ m>. (a) Find the initial temperature of the
gas in kelvins. (b) If the gas is allowed to expand to twice the initial
volume, find the final temperature (in kelvins) and pressure of the
gas if the expansion is (1) isothermal; (i1) 1sobaric; (ii1) adiabatic.



19.35. IDENTIFY: Combine TV~ =T,V) ' with pV =nRT to obtain an expression relating T and p for an

adiabatic process of an ideal gas.
SETUP: 7;=299.15K

nRT nRT ) nRT, TV TY
EXECUTE: V =—— SOT{ 1] :TZ( ZJ and ——=—2

—1 —1°
p 12 12 p17 p27

bl 0.850x105 Pa)
T, =T,| £2 =(299.15 K)| — — =284.8 K=11.6°C
Py 1.01x10° Pa

EVALUATE: For an adiabatic process of an ideal gas, when the pressure decreases the temperature
decreases.



19.36. IDENTIFY: pV =nRT For an adiabatic process, T,/ =T,V
SET UP: For an ideal monatomic gas, y=5/3.
5 3 3
EXECUTE: (a) T = pV _ (1.00x10° Pa)(2.50x10 ° m”)
nR (0.1 mol)(8.3145 J/mol - K)

(b) (i) Isothermal: If the expansion is isothermal, the process occurs at constant temperature and the final

=301 K.

temperature is the same as the initial temperature, namely 301 K. p, = p;(V|/V,) =% P = 5.00x10* Pa.
(ii) Isobaric: Ap=0 so p, =1.00x10° Pa. T, =T;(V,/V;) = 2T, =602 K.

Tlvl}/—l _ (301 K)(VI)O.67

(111) Adiabatic: Using Eq. (19.22), T, = —

1 0.67
=301 K)(E) —189 K. Then

pV =nRT gives p, =3.14x10* Pa.

EVALUATE: In an isobaric expansion, T increases. In an adiabatic expansion, T decreases.



19.58 .-+ High-Altitude Research. A large research balloon
containing 2.00 X 10° m? of helium gas at 1.00 atm and a temper-
ature of 15.0°C rises rapidly _

from ground level to an altitude Figure P19.58
at which the atmospheric pres-
sure is only 0.900 atm (Fig.
P19.58). Assume the helium
behaves like an ideal gas and
the balloon’s ascent is too rapid
to permit much heat exchange
with the surrounding air. (a)
Calculate the volume of the gas
at the higher altitude. (b) Calcu-
late the temperature of the gas
at the higher altitude. (c) What
is the change in internal energy
of the helium as the balloon
rises to the higher altitude?




19.58.  IDENTIFY: The process is adiabatic. Apply pV}” = p,V/ and pV =nRT. Q=0s0
1
AU =-W = _ﬁ(prl = pah).

SET UP: For helium, y=1.67. p, =1.00 atm =1.013x10° Pa. ¥; =2.00x10° m".
P, =0.900 atm =9.117x10* Pa. T; =288.15 K.

Iy 1.00 atm 1/1.67
EXECUTE: (a) V{:V((ﬂ). v, :Vl(ﬂJ = (2.00x10° m3)('—j —2.13%10° m°.

P2 P2 0.900 atm
. T, T
(b) pV =nRT gives ——=—2—.
o Pl
. 2.13x10° m*
=1 22 | L2 ]2 (288.15 K)(O%O atm) X109 M| 5962 K =3.0°C,
n)\N 1.00 atm J| 2.00x10° m

(c) AU=—#([I.OI3X105 Pa)(2.00x10° m*)]-[9.117x10* Pa)(2.13x10° m?)]=-1.25x10" J.

EVALUATE: The internal energy decreases when the temperature decreases.



19.62 - Engine Turbochargers and Intercoolers. The power
output of an automobile engine is directly proportional to the mass
of air that can be forced into the volume of the engine’s cylinders
to react chemically with gasoline. Many cars have a turbocharger
which compresses the air before it enters the engine, giving a
greater mass of air per volume. This rapid, essentially adiabatic
compression also heats the air. To compress it further, the air then
passes through an intercooler in which the air exchanges heat with
its surroundings at essentially constant pressure. The air is then
drawn into the cylinders. In a typical installation, air is taken into
the turbocharger at atmospheric pressure (1.01 X 10° Pa), den-
sity p = 1.23 kg/ m®, and temperature 15.0°C. It is compressed
adiabatically to 1.45 X 10° Pa. In the intercooler, the air is cooled
to the original temperature of 15.0°C at a constant pressure of
1.45 X 10° Pa. (a) Draw a pV-diagram for this sequence of
processes. (b) If the volume of one of the engine’s cylinders is
575 cm®, what mass of air exiting from the intercooler will fill the
cylinder at 1.45 X 10° Pa? Compared to the power output of an
engine that takes in air at 1.01 X 10° Pa at 15.0°C, what percentage
increase in power is obtained by using the turbocharger and inter-
cooler? (c) If the intercooler is not used, what mass of air exiting
from the turbocharger will fill the cylinder at 1.45 X 10° Pa? Com-
pared to the power output of an engine that takes in air at
1.01 X 10° Pa at 15.0°C, what percentage increase in power is
obtained by using the turbocharger alone?



19.62.

IDENTIFY: m = pV. The density of air is given by p =%. For an adiabatic process, TlVly_1 =1V -,

pV =nRT

nRT

SETUpP: Using V = in TlVl}/_1 = Tsz}/_l gives T1P11_y = szé_}/-

EXECUTE: (a) The pV-diagram is sketched in Figure 19.62.
(b) The final temperature is the same as the initial temperature, and the density is proportional to the
absolute pressure. The mass needed to fill the cylinder is then

5
m=pgy L= = (123 ke/m)(575x107° m?) 1.45x10° Pa

S~ -1.02x107° kg.
Pair 1.01x10° Pa

Without the turbocharger or intercooler the mass of air at 7 =15.0°C and p =1.01x 10° Pa ina cylinder is

m= poV =7.07x 107 kg. The increase in power is proportional to the increase in mass of air in the

1.02x107° kg

= —1=0.44 = 44%.
7.07x107* kg

cylinder; the percentage increase is

)41

T =-nly 7y
P=p (Flj [&] = [&J (&J = %(&J . The mass of air in the cylinder is
2 )\ P1 P P P

1.45x10° Pa
1.01x10° Pa

(r-D7y
(c¢) The temperature after the adiabatic process is 7, =T} (&J . The density becomes

1/1.40
m = (1.23 kg/m*)(575x107° m3)[ ] =9.16x10"* kg,
9.16x10~* kg
7.07x10~% kg
EVALUATE: The turbocharger and intercooler each have an appreciable effect on the engine power.

The percentage increase in power is —-1=0.30=30%.



19.68 - Comparing Thermodynamic Processes. In a cylinder,
1.20 mol of an ideal monatomic gas, initially at 3.60 X 10° Pa
and 300 K, expands until its volume triples. Compute the work
done by the gas if the expansion is (a) isothermal; (b) adiabatic;
(c) isobaric. (d) Show each process in a pV-diagram. In which case
is the absolute value of the work done by the gas greatest? Least?
(e) In which case is the absolute value of the heat transfer greatest?
Least? (f) In which case is the absolute value of the change in
internal energy of the gas greatest? Least?



19.68.

IDENTIFY: Use the appropriate expression for W for each type of process.
SET UP: For a monatomic ideal gas, ¥ =5/3 and Cy, =3R/2.

EXECUTE: (a) W =nRT In(V,/V;) = nRT In(3) =3.29x10° J.

(b) Q=0 so W =-AU =-nCyAT. TV =T,V gives T, =T;(1/3)*"*. Then
W =nCyT,(1—(1/3*)) =2.33x10° I.

(c) V, =3V, so W = pAV =2pV, = 2nRT; =6.00x10° J.

(d) Each process is shown in Figure 19.68. The most work done is in the isobaric process, as the pressure is
maintained at its original value. The least work is done in the adiabatic process.

(e) The isobaric process involves the most work and the largest temperature increase, and so requires the
most heat. Adiabatic processes involve no heat transfer, and so the magnitude is zero.

(f) The isobaric process doubles the Kelvin temperature, and so has the largest change in internal energy.
The isothermal process necessarily involves no change in internal energy.

EVALUATE: The work done is the area under the path for the process in the pV-diagram. Figure 19.68
shows that the work done is greatest in the isobaric process and least in the adiabatic process.
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Figure 19.68



