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Numerical answers should be given to 3 significant figures. 72 ik 4 =4 A B 7

1. Retrograde Motion of Mars (9 points) ‘K EKIEATZES) (94)

In the history of astronomy, the phenomenon of the retrograde motion played an important role.
Suppose we observe the position of Mars at midnight every night for many nights. Using distant
stars and constellations as the background, we will find that Mars moves from West to East most
of the time. However, there are periods of time that Mars is observed to move in opposite
direction, as shown in the figure. The orbital period of Mars is 1.88 y. Assume that the orbits of
Earth and Mars are circular, and the tilting of Earth’s axis can be ignored.
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(a) What is the orbital radius Ry of Mars? Give your answer in AU (Astronomical Units, 1 AU
is the average distance between Sun and Earth.) (1 points)

RO BRI Rv » BFIELL AU AL - (1 AU ERPHSHEREYFHRER - )
(143)

< 2
: 2
Using Kepler’s Law, 12 & #EH#, R, = RE[-_;—MJ = 1(?)3 =1.5233 AU~1.52 AU
E
(b) Att =0, Sun, Earth and Mars lie on a straight line. Sketch a figure indicating the positions of
Sun, Earth, Mars, and star T when t > 0. Label them by letters S, E, M, and T respectively.
Mark the angular displacements & and 6y of Earth and Mars respectively (starting from t =
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(©)

0), and the angle @ that gives the angular position of Mars as observed from Earth using
distant stars and constellations as the background. (2 points)

fEt =0 » KIH ~ MK ~ SKER—HE L - WIF—5E - BUrIE t> 0 > K6 ~ HiEk -
KEME THE > LIS By MAITHOR © FEE_EARRHERNDK BRYE AL 57510
G O (Bt=0FG) » FIERNZK BAAMAIE S (LU BN ERE &) -
(253)

Re R

SN

0, ‘9M

E

Derive an expression for the angular position ¢ of Mars at time t. Express your answer in
terms Rg, Ry, @e, anv and t, where oz and wy are the orbital angular velocity of Earth and
Mars respectively. (4 points)

I KRR E I FAALE 0. RiTLL Re, Rv, @, o AT ERIR, A e Mo 73
BB KERAEEZ. (37

0. = w:t, 6, = ot ¢ 0

In triangle SEM, we need to find the M
exterior angle at E. By constructing a
perpendicular line from M to SE, this
angle is

E=MIL SEM B, T A E 5.
M MAE—ZFEE T SE, "] WXMAH

) tan‘l( Ry, Sin(6; —6,,) J

Ry cos(6: —6,,) — Re

0= w t—tan_l( Ry sin(at — ot) J
- "E

Ry Cos(@:t — ayt) — Re

(d) Calculate the angular position ¢ of Mars att = 0.1y, 0.2 y and 0.3 y. Give your answer in

degrees. (3 points)

I KELE t= 014, 0.2 FFEA 0.3 FFEI AL E 0. BZRIELEHE R, 370
1.5233sin[27(0.1) - 27(0.1)/1.88]

1.5233cos[27(0.1) - 27(0.1)/1.88]-1

1.5233sin[27(0.2) — 27(0.2) /1.88]
1.5233c0s[27(0.2) — 277(0.2)/1.88] -1

Att=0.1, 0=27(0.1)— tan—{ ] =—7.963° =~ —8.00°

Att=0.2,0=27(0.2)— tan-{ J = —0.4538° ~ —0.454°

2
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1.5233sin[272(0.3) — 272(0.3) /1.88]
1.5233co0s[27(0.3) — 27(0.3)/1.88] -1

Att=03, 0=27(0.3)- tan‘l[ ] = -16.43° ~16.4°

2. Rolling Ball on a Racket (10 points) BR¥FEIR (10 43)

As shown in the figure, a hollow spherical ball of mass M and radius R is placed on a racket of
mass m. The racket has a flat surface with coefficient of static friction & and coefficient of
kinetic friction zand is held horizontally.

WEFR, —MRERN M, 28 R 2GRN EERER m ko b skinBA
—APIHRRT, R ROV, SEE REBOY e I HA R R KT AL E

R
'
| >

(@) The racket is driven horizontally by a periodic force F(t)=F,cosa,t, with the ball

remaining non-slipping. Calculate the maximum velocities of the oscillations of the racket
and the ball, denoted as ux and uy respectively. (The moment of inertia of a hollow sphere of
mass M and radius R is | = 2MR?/3.) (5 points)

BRI LR T F(t) = F, cos apt WK-F 7 M1 3KE), [l BR4EFFE AT B BIRAE  wlit
SRR S ERYRBNIN B R E, 70 RN Ml uye  (REN M, P40 R A5 LEK
RSB 1= 2MRY3. D (54%)

Let x and y be the displacements of the racket and the ball respectively. Let 6 be the angular
displacement of the ball (counted in the direction of x at the contact point with the racket).
Let f be the frictional force between the racket and the ball. Applying Newton’s law,

D Xy A AERIA S ERIINIAE o 2 ONERII AR (O 4 BEAE 5 BRI0 H b mi v or
¥ x AR o B RERIA SRR R EERE 1. is AR,

mi=F—f (1)
%MRzé = fR 3)
Condition for no slipping: AN a4 FE: 0= x;y @)

From Egs. (3) and (4), \ 7720 (3D 1 (4) %M(X‘—V):f (5)

Combining with Eq. (2), &5 &2 (2) : y= %x and f =§M>‘<‘ (6)
Substituting into Eq. (1), fRA T2 (D, (m+§M]X‘ = F, cos amt
Sk, cos at 2F, cos ot 3F, cos w,t

Solution: fi#: xX=——-2""90_ y=—_— 07" "0 g _ :
@M +5m)a? ' )T (2M +5m)af (2M +5m)aZR
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_ SKssingt . 2K sinagt 0= 3F, sina,t
(2M +5m)a, ' (2M +5m), (2M +5m)ay,R
5F, 2F,

Hence Bt u =—— —— uy =——72L
“ (2M+5m)w, ' (2M +5m)a,

(b) At the moment the racket is oscillating at its maximum velocity, its motion is brought to rest
abruptly by an external force much stronger than the limiting frictional force between the
racket and the ball in a very short duration of time. What is the final velocity of the ball? If
the final velocity of the ball is 0, what is the displacement of the ball? (5 points)
FERRIOIREN B I RHE W —ZI, IS RIRBE AN Ak, IX 4077 EEBRT 5 3k 18] ) A
SREERR g3 2, VER I A ARAE . R BRI AR T2 2 /07 IR AHE N 0,
HAi gz b2 (540)

The impulse acting on the racket is given by the external force multiplied by the time
duration of the force, whereas the impulse acting on the ball is given by the limiting frictional
force multiplied by the duration. Hence the impulse acting on the ball is negligible. Hence
when the racket stops moving, the ball continues to move with the velocity u, and angular

3F, u, . I e
= . Since u, # —Rw, the ball will slide until it finally rolls.
(2M +5m)m,R 2R
Applying Newton’s law,
VEAEERSE B B2 A g3 LA DR RIS Ta], T A P AE 3R L B v 2 R Al PR BE 42 1 3fe LA
TFER RIS E] . PR, fERAEER By &R LRI AT B, HEkdpiE BB s,

3u S
FRAESELUERE uy A 0= —— 0 = Y g Hu %R, HAWE, H
(2M +5m)w,R 2R
S AR, B HUEE,
My=-yMg = yzuy_,ukgt

2 . -3 3
“MR’9=-fR = RO==u,——u gt
3 2 y Zlukg

velocity o =

When the ball stops sliding, 243k ILIEZIEf, RO=-y = u,=pgt = y=0

2

1 - U
=ut—= gt =—2
y y le'lkg 2[leg
Hence the final velocity of the ball is 0, and its displacement is Xt ER () F &K E N 0,
AY N u2
i hy=—"—.
21,9

3. Balloon (10 points) KER (1043)

The work done in stretching a spring is converted to its spring energy. Likewise, the work done
in stretching a surface of a membrane is converted to its surface energy, given by E = 45, where
yis called the surface tension of the membrane, and S is its surface area.

AU B P D P R R N BE © [EIRE - R f— SRR I P S D B U ERY
FRIAREE = )8 » Hor R WL 77K 7, i SHe HAR T AR -
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(a) Consider a balloon of radius R. What is the change in surface energy when the radius
changes by dR? Hence derive an expression for the pressure due to surface tension. (2 points)

FREPENRIYRER o LR AR » RHEENT(LES /D ? RIS FRE KT

TRHIE SRR A - (293)

The surface energy of the balloon is E =»87R* (the balloon has both inner and outer

surfaces). BRI R M AE R E = y87R? (CKERE BEANHIE)

Hence dE = y162RdR . Equating this to the work done by pressure {1 % [&] s 32 5 (1) Th

y167RdR 4y

47R°dR R’

(b) The surface tension of balloon A is . When it is filled with a diatomic ideal gas, its radius
becomes Ry. The surface tension of balloon B is 2. When it is filled with the same kind of
ideal diatomic gas, its radius becomes Ro. The temperature of the environment is T. The two
balloons are then connected so that the gases are free to exchange between them until a
steady state is reached. The final temperature is the same as that of the environment. What

are the final radii of the two balloons respectively? You may neglect the atmospheric

pressure in the analysis. (4 points)

SERANFEE K ST e BEFRW T —FRUSE TR B, AR RERy. ABRBHIR

5K 192y, e F XU TR 7, PR ERy . MBI AT, A

JE PR RERBCERE, S UA R DME AT 18 B A, HEEBIRERES. &%k

JE SRR o 7] A TIRER A WA R AT A 7 AE 3 M AR AT LA KR T .
(473)

Since the initial pressure in balloon B is higher, the gas will flow from balloon B to A. The

radius of balloon B decreases and that of balloon A increases. Hence the pressure in balloon

A and B increases and decreases respectively. The pressure difference increases, driving the

system further away from equilibrium. This continues until all gases flow into balloon A.

Hence Rg = 0.

PRONSERBIVHI 4G R e > Sl SR M SERBIR A, SERBRYER D » SBRAR

I o AL > SERARIBRYE SR 73 A RFLB N, et — 2 B P o X IE IR

2, HEIFTER SRR ASERA. Bk, Re=0.

To find Ra, we consider the initial number of moles of gas in balloon A:

TR HRA, FATHE S RTINS TERAA A BE R £

. = AN _ i ﬂ 47ZR3 _ 167Z7’R§
AW RT  RTIR, A\ 3 ) B3RT
Similarly, the initial number of moles of gas in balloon B:

[FIRE, AT S IRB A I B R 2
o _PeVe _ 1 (8y](4ﬂRg)_32ng

dW = pdV = p47R*dR, 167RdR = p47R’dR = p=

" RT RT\(R, |\ 3 3RT
Since the number of moles of gas is conserved, P& 4 4 i JBE SR # <y 1,

2 2 2
167R} _16mR; | R20R) o _ ap

3RT 3RT 3RT
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(c) What are the amounts of heat gain by the gases in balloons A and B respectively during the
gas exchange process in (b)? (4 points)
FE(O)EHY SRR AT AZ F > SERAMIBIE IRV AGE Al 2 2 (497)
Using the first law of thermodynamics, N F #5265 —E & »
Heat gain = internal energy change + work done by the gas
FREEHE NN = WREIER + SUEMAYL)
The internal energy of an ideal gas is independent of its volume.
HRESEINRE SRS -
For balloon A, Yf<ERAKIT
16mRs - _
sRT ' =
Work done by the gas is equal to the change in surface energy of the balloon:
SRR S T SRR © W, = 782{J3R, —8:RE =162R2.

For diatomic ideal gases, £ X5 T-FAE A4, ¢, =gR.

327¢, 1R,

16
Internal energy change: NBEIAT @ AU, = ST?./(\@Ro)ZCvT - o

: 32mR: (5 128mR?
Hence heat gain: FrLURREEISIE © Q=AU +W, = ;UFTO (E R)+16727’R02 - @
Similarly, for balloon B, [E]f+ » YWSEKBKiA

2 2
AU, __327Z7’R0 c,T _ 32 R _

3RT 3R
2 2
Qs =AU, +W, = —32;?0 G R)—16717R§ _ _128274% |

Remark: A common mistake is to assume that the pressures in both balloons are the same
when the gas exchange process has reached steady state. This implies

A — NE IR, RS UASRE AR SRS, BRI SR AE .
ES TN
4 _8 _ R,=2R,.

R, R,
Since the number of moles of gas is conserved, K] A/ 4 ) B /R H <y 1E
R 2R 128mR; 128mR?
RA+2(2R,)* =3R; = RA:T; and RB:TS’Oand Qu=- 9 = Q= 9 -

However, this equilibrium state is unstable. 7] /&, X F#7& 2 A FaE K.

4. Fresnel Biprism (10 points) JEEEXES: (104)

Fresnel biprism was devised shortly after the famous Young’s double slit experiment to confirm
the interference phenomenon. Nowadays, it is widely used in different applications. As shown in
the figure, it consists of a single light source S and a pair of wedge-shaped prisms arranged back
to back. We introduce the following notations:
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TEE AW IRAEE LT AN A, 84 7 3R X B iett, FHUA IR
ms, ERTZHTARKRMA. mE R, BEHNERORIE S A
TEEHN . BA1GIALLTFR5:

n = refractive index of the biprism X% & i) 41 5 %

o = apex angle of each prism XUks 45 ) T £

b = distance between light source and biprism S5 5 XUBE 45 1) 2 25

¢ = distance between biprism and screen XUk 5 5 5 2 11 2 &5

A = wavelength of light Y&

a
Se
a
+«— |p >le c >

(a) Derive an expression for the angular deviation after a light beam has passed through one of
the two prisms. (3 points)
SR A Horh— Mg e s A Ris. (370
Consider a light beam incident on the upper prism. Let
6 be the incident angle. For the angles shown in the

figure, Z L
RN EBEREER. oA A, XTRFE y
7R R X Ka

0 0 /6'}4
X=—, Yy=a-X=a—-—, IZ=hy=na-0.
n n

The angle between the deflected beam and the
horizontal direction fi % Y6 #5747 5 [ {1 £
=a—-7=0-(n-1«.
Hence the angular deviation of the beam is AT LAY W 5 A & (n — 1) e
(b) Derive an expression for the separation of the fringes on the screen. (4 points)
RHET PR FoRSuR A RE . (40
When 6= (n— 1), the beam emerges parallel to the horizontal direction. Hence the image of
S in the upper prism is located at a distance bd= (n — 1)b« above S.
260 = (n - Do SR GAEKET M. Fik S7E LG R EAMT S
b, &N b= (n-1)ba.
Similarly, the image of S in the lower prism is located at (n — 1)b« below S.
[FFEHL, SHETHRETHRERAT ST, BN bo=(n-1)ba.
This is equivalent to the Young’s double slit experiment with slit separation d = 2(n — 1)bea.
X AR R & [F) A7 IR S e, AUEEFEES N d = 2(n - 1)ba.
Condition for constructive interference: Fi T¥# 1%F: dsind=mA.
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Positions of the bright fringes: /625 SUMALE: y=(b+c)tand~ (b+c)sind= (b+ c)mT/1 :

Hence the fringe separation: (Al ML A SUAIFIEE . Ay = (b+ c)i __(b+o)d
d 2(n-Dba
(c) In a modern application on electron microscopes, the single light source is replaced by a

parallel beam of wave incident normally to the flat surface of the biprism. Derive an
expression for the separation of the fringes on the screen. (3 points)

FEIAR, XN B B . RN, BRI e NS AT
BOR, TEE TG, SR LRguEE AN (370

When the waves are incident on the screen at an angle ¢, it sets up a traveling wave in the
transverse direction with a wavelength A/sing.

LA AE NS RIS b, B T AN N ALSin g 5] 473

In the biprism setup, we have ¢ = (n — 1) and two waves with the same frequency and
wavelength traveling in opposite directions. Hence a standing wave is formed.

AR BEERESY, Bl1ES=(n - 1o, MHEDEAMEIEMBEA . HIEHRITRAT
HRAT . B, FRBAEIEAL T

Fringes in standing waves are separated by half wavelengths.

TR Hh 2 U ER B A — 2.

Hence the fringe separation is: [At, 2580A1EA: Ay = 4 A

2sing . 2(n-Da

5. lonic Crystals (11 points) BTk (114)

An ionic crystal can be modeled by a chain of positively and negatively charged ions. The ionic
separation is a. The positive ions with atomic mass M are located at the positions x = na where n
is even. The negative ions with atomic mass m (m < M) are located at the positions x = na where
n is odd. The ions are coupled to their neighbors by springs, which provide restoring forces to
their transverse displacements. The returning force is proportional to the displacements of the
ions relative to their neighbors, and the spring constant is k.

FRATTAT DA — B iy IE s SO &, AR TR . BBy a. IEE T
WIERTFREAM, TAE x = na, Hon2l#. fREFREFRENM (m< M),
AETAEALE x = na, Hn @a s, MHAHE TAMEME, FRENE TR AR SRt
IR[E Sy o 3R Ay IEH T B AR AR T8, IF B HO k.

(@) Let un(t) be the transverse displacement of the ion at x = na and time t. Derive the equations

of motion for both types of ions. Show that the solution of the equation of motion can be
written as

L un) T x= na KB TAERE] t RIRERIALRS . ke T AR B T 1 is sl T AR
RN 877 FERI AT LS ik

0 = A, sin(gna—at) neven,
W=\, sin(ana—ot) nodd.

Find the relation between ¢ and . (3 points) iX#kHH q oI K K. (34
Using Newton’s law, | F 2Fiil g 1,
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MU, =k(u,,,—u,)—k(u,—u,_)=Kku_,—2ku +ku_, forneven, n 2%
mi, =k(u,,, —u,)—k(u, —u,_)=ku_, —2ku, +ku_, fornodd. n &%,
For even n, n & fH& T,
— M’ A, sin(gna— at)
= kA, sin[q(n—1)a— wt] - 2kA, sin(gna — at) + kA, sin[q(n+1)a — at]
= 2kA, cosgasin(gna— at) — 2kA,, sin(gqna — at)
= —Ma®A, = 2kA, cosga— 2kA,
= (Mo’ —2k)A, +2kcosgaA, =0. (1)
For odd n, n /& & 2,
—ma’A, sin(gna— at)
= kA, sin[qg(n—1Da— at]-2kA, sin(gna— at) + kA, sin[q(n+1)a— at]
= 2kA,, cosgasin(gna— at) — 2kA, sin(gna— at)
= —ma’A, = 2kA, cosqa—2kA,
= (maw®—-2k)A, +2kcosgaA,, =0. (2)
Egs. (1) and (2) have non-trivial solutions if 72 (1) F1 (2) A LM%
A, _ 2kcosga = ma’—2K
A, Mao?-2k  2kcosqa
= (Ma* -2k)(ma® - 2k) = 4k cos® ga
= Mmoo’ -2k(M +m)ew’® +4k*sin®ga) =0
2 B2
e \/k(M +m)ik\/(M'\;|rmm) —4Mmsin qa.

(b) Find the solutions of w in the limit g = 0, and the relation between Ay and A, for each
solution. (2 points)

TEMRIR q=0, KRolIFrEME, It HREGNMET AvS AnlBIFKS R (240
In the limit q = 0, the high frequency solution is 7EM R q =0, EAifE &

» k(M+m)+k|M+m| 2k(M +m) [2k(M +m)
@ = = = O=,|—.
Mm Mm Mm

Ay _ 2kcosga _ 2k . m

A Mo*-2k  2k(M+m)/m-2k M
The motions of the two ions are out of phase. i 5 7 i3s3 & S o

o 1 4AMm(ga)®
The low frequency solution is XA E ©° = —| k(M +m)=k(M +m). [1- ————
quency AR 2 o Mm{ ( )—k( )y (M +m)?
2 2A~2
zk(M +m) 1-|1- 2Mm(qa)2 =2kqa L e / 2k g
Mm (M +m) M +m M +m

Au _  2kcosga 2Kk

A Mo?—2k -2k

n+1

1.
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The motions of the two ions are in phase. P f 2 1 K1z 5 2 [F A .
(c) Inthe limit g = 0, calculate the wave velocity of the low frequency mode. (1 point)
FERPR q =0, Wit ERIRIBaE. (17

Wave velocity: Jif: v=""= aW/ 2 .
q M+m

(d) In the limit g = #/2a, find the solutions of o, and the relation between Ay and A, for each
solution. (2 points)

FERIR q = n2a, KoWIFTARE, IHHREFENMED AvE AnllFIK R (270
In the limit q = 772a, the high frequency solution is ZEHRIR q = 72a, EfEZ

, k(M+m)+k[M-m| 2k 2k

a = =— = - [—
Mm m m

Au __ 2kcosga _0

A Mo -2k
Only the lighter ion moves. R A & 1 & iz 3l
The low frequency solution is {EATfi# & o® = AWM= =) A o o £

Mm M M

Ay __ 2kcosga

A~ Mo?-2k’

Since both the denominator and numerator vanish, we have to consider higher order terms.

PR o3 BRERO T [EIR IR - JAT T b 28 & e o 0

_ _ 2 2 2
w2=k(M +m) k\/(M m)< + 4Mmcos ga _ k M +m—(M —m) |1+ 4Mmcos ga
Mm m (M —m)
2 2
zL M+m—(M—m)—2MmCOS ga =2_k 1_Mcos ga
Mm M-—m M M—m
Av 2k cosga _ M-m Qe

A~ 2k-2kMcos?ga/(M —m)—2k M cosga
Only the more massive ion moves. R G E ) & -F1EIE 5.
(e) Sketch the angular frequency  as a function of the wavenumber q from q = —#2ato q =
7d2a. (2 points)
e AR o FENECE g R B E K], JuEM q=—-n2a | q = n2a. (27))

The case M/m =2

2 2
in /--\
uni 151
ts 1 -
of
i 0.5 -
-1 0.5 0 0.5 1
2qal/w

10
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(F) An electromagnetic wave is incident on the crystal. Which frequency mode will be excited?
(1 point) A FBABN S B Ak MR g ok 7 (1)
Since in the high frequency mode, positive and negative ions oscillate out of phase,
oscillating electric dipole moments will be formed. Hence the high frequency mode will be

excited. M TERPUER R, IR0 T LURMIRS), RS EEPRFERIE K. Fit,
e AR R U o

(THE END 58)»

11
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Pan Pearl River Delta Physics Olympiad 2015
2015 3z Tr =1 S e A4 R B R DL 3 18155 3%
Sponsored by Institute for Advanced Study, HKUST

PR K = AR 7 e )
Part-2 (Total 2 Problems) -2 (3£2 i)
(2:00 pm —5:00 pm, 25 February, 2015)

1. Exoplanet Microlensing (25 points) 2/MTERIBGEERS. (2543)

Reference: 2% iik: B. S. Gaudi, Exoplanet Microlensing, EXOPLANETS, edited by S.
Seager, Space Science Series of the University of Arizona Press (Tucson, AZ, 2010).

With the discovery of planets orbiting around stars in recent years, the observation of exoplanets
from astronomical distances became a challenge to scientists. Gravitational microlensing is one
of the detection methods. It makes use of Einstein’s discovery in general relativity that when a
light ray passing near a spherically symmetric body of mass M, its direction will be deflected
towards the body by a small angle given by

W ILE RO REE RIZATHIAT A, BRSO IR R SCEE B 1 R AMT B BN RF A
Pk 51 U oE B2 H A — A 77 . R % IR AR SCHD 8 BRI JE 2,
e B L LT — N E N M BB IRV, 7 [F 2wl A e, e BN RN

AGM

rcz '

(24

where G is the gravitational constant, c is the speed of light, and r is the distance of closest
approach of the light ray to the body. In this problem, we will study the principle of detecting
exoplanet by microlensing.

Hrf G RTAESIIHEEL ¢ RIGE, r MR R . XA R, AT
WIF 738 i G B RO PRI 2 ST I R

(a) Consider a distant star S located at a distance Ds from Earth E, acting as the light source.
Another star L of mass M and located at distance D, (< Ds) from Earth acts as the lens. The
lines EL and ES make a small angle S between them. Construct the following sketch in the
answer book: (al) the line EL, (a2) the line ES, (a3) the distances D, and Ds, (a4) the angle S
(remark: although this angle is small in practice, it should not be drawn too small for the
purpose of clarity), (a5) a line perpendicular to EL through L, acting as the gravitational lens,
(a6) the light ray from S to E, assuming that each of the segments between S and the lens and
that between the lens and E are straight lines, (a7) the deflection angle «, (a8) the apparent
angle @ of the star S as observed on Earth (relative to line EL). (3 marks)
FE—MEITER S, BHIK E WEERCN Ds, fENGIE. 5—RUEE L, FiEN M,
FHIRHIEEE Y Dy (< Dy) , 1ENIESE. 2k EL A1 ES MBI/ N NL. XA L
DI EE:  (al) £8 EL, (a2) 28 ES, (a3) i Dy Fl D, (ad) FMER (JE:
BIRZA LR FARAN, (HOMIEREN, ANIEELRERADN) , (ab) —FKEET EL
s L gk, 1ER5171&5, (a6) M S B E BJtdk, e S MBS RIZ B &
FE E 2 LB S TMIEELZ, @D fWEfia,  (a8) MHIEKRMEZE S KA 0

(FEXTFLEL) o (349

12
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- N __

Ds

(b) Derive an equation for the angle @in terms of the parameters Ds, D), G, M, ¢ and f, assuming
that all angles are small. (3 points)
WHEF TR, UZSH D Dy, G, M, c M gRIL, AIMRHTAE AR . (37))
Constructing the vertical line XY through S, we have
fE—aRE L XY @it S, A
XY = XS + SY,
D,6=D,fp+(D,-D)x

- 4GM
Substituting a = o and r=D4,

4GM
firna=22Hr =00,
E Y
D, - D, |4GM i . i
O=p+ = } L I I
p ( D,D, ] c’0 L D, g |
1 o
p-p_4CM(D.-D b g
c’0 \ DD, )

(c) Consider the case that the lens is exactly aligned with the source (£ = 0). The image of S
appears to be a ring known as an Einstein ring. Derive the expression for the angular radius

& of the Einstein ring. (2 points)
FEES SOUEREREN (B=0 . SHERENE, HAZRLHE, {H#HF%Z
RITEA R M 1 e R RE . (243)

0=9_4(32M D, - D, = 0= 4GZM D, -D, .
cd \ DD c DD,
(d) Calculate the Einstein radius for the following typical values:
WL AR S, 5052 R A H A

M = 0.3 solar mass, Ds = 10 kpc. D, = 3 kpc.

Give your answer in milli-arc-seconds. You may use the following constants:

i LA milli-arc-seconds KIARIZE 5. EWRTLMEH LT S &

G = 6.67 x 10 Nm?kg?, 1 solar mass = 1.99 x 10% kg, ¢ = 3 x 10® ms™, 1 kpc = 3.09 x
10" m, 1 radian = 206265 arc seconds. (1 point) (14})

13
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- 4(6.67x1071)(0.3)(1.99x10%*) 10-3
. (3x10°)? (10)(3)(3.09x10")
= 0.754 milli-arc-seconds.

} =3.66x107° rad

(e) When the lens and the source are not exactly aligned, there will be two images of S. It is

(f)

convenient to express the angles £ and @ in multiples of the Einstein radius &. Hence we

g

define u Ee_ and yzei. Derive the expressions for the angular positions y of the two
E E

images in terms of u. (2 points)

HIBEBBADCIRA XS TF, S KA MR, ﬁﬁ@iﬂ, FATLLZ AT 4H 42
R Rk T O, FILIRATE Lu= ég%Dy a7 WHES PRI AAE y, Y

E

u®mr. (249

4GM (D,-D 0; 1
=60- s 1 =0--+% u=y-— —uy-1=0
F CZQ[DSD,J:ﬂ g — UTVTy T YW -
_utu’+4
=
To study the effect of the finite size of star S, we introduce Cartesian coordinates on the
plane normal to ES and through S, with the y axis lying in the plane containing E, L and S.
Consider the corners (0, u + ¢) and (o, u) of a square on the surface of star S (6 << u).
Calculate the coordinates of the two corners of the two images when viewed from Earth. (2
points)
N S AMRK/NRISNT, RAEFEE T ES Ml S ~Fim L, sIN—FHEM
by, Hrby Bz TS E, LATS PR, HREAE SR E— M IETERIMO, u +
O) M (8, u) (5<<u)o RTHE MBS, KA FEART A A ALFR. (253

The image of (5, u) is ( ] (5, U5 1%E( ]

utvu’+4 u Vu?+4+u ydu
2 \/U +4 2Ju +4 JuZ+4

Hence the image of (0, u + o) is AT LA(0, u + O) 5415 &

u+vu’+4

1+

Ju?+4

st

In summary, for the image at y = — the images of the corners (0, u + ) and (5, u)
are respectively
u++vu’+4
ISE T Xﬂ‘??iy=#ﬁ’1 v, M0, u + A (s u) B E A2
u-++u®+4 ) U+vu?+4 _u+u’+4
0, 1+ and 0, .
2 Ju? +4 2u 2

14
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(9)

(h)

(i)

u—-vu*+4

For the image at y=T, the images of the corners (0, u + ¢) and (o, u) are
. u—+u’+4
respectively Xt - 7£ y=—"p K 21, O, u+ )M u) &SN E
0u—\/u2+4 . 9O - u—\/u2+45u—\/u2+4
-2 Ju?+4 au 2 '

Calculate the areal magnifications of the two images of star S in terms of u. Following the
practice in astronomical observations, give your answer in absolute values. (2 points)

HITHEE S EI’JW/I\%{%EI’JEWBU@% IELL U IR o FHERSONWIEY > 15T - 18 AT
ENEFE - (249))

. utu®+4 +Vui+4 o
The length scales are magnified by and USafll ar in the x and y directions
2u +2/u’ +4

respectively. Hence the areal magnifications are:

KB4 BITE X Ry FIROR T by “”“ +4 guEVui+4

+2\/u +4
[ui\/u2 +4][ui\/u2 + J

(u+\/u +4 )Z [ u’+2 ]
2u +2Ju’+4 )  4|u|Ju®+4 lu|Vu®+4

In practice, since the images cannot be resolved, astronomers measure the sum of the
magnifications of the two images. Derive the expression for the total magnification. Describe
its behavior when star S is remote (u approaches infinity) and when S approaches perfect
alignment with L and E (u approaches 0). (3 points)

bR b, HTHEAG D, RICHF RN FAR RO A a3 T8
REWFRZR, ke S Emae (Bt , KA SEBIEXNE LS E RN
Bl 0), SIBKEMATHN. (37

Total magnification: & k%

A 1 ut+2 1 ut+2 u®+2
2\ |u|vJu® +4 2\ |u|vJu® +4 |u|\/u2+4.
When u approaches infinity, 24 u iz £ K: A—>1.

. 1
When u approaches 0,24 u iz 0: A— m

A planet P of star L has mass m and is located in the plane of E, L and S at the same distance
D, from Earth. EP and EL makes an angle &,. Derive an equation for the angle & taking into
account the gravitational lensing effects of both star L and planet P. Expressions in the
equation should be written in terms of the parameters Ds, Dy, G, M, ¢, #, m and &, assuming

o P, HRBORERN:

that all angles are small. Simplify the equation by introducing the mass ratio q = % and the

o P 0 . (3 points)

rescaled positions u, = —*, -
Oc Oc Oc
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)

LS AFR PR B LA S (0P b, FFES m, SHIREESEE LA D,
EP 53 EL [0, . HIEAR L MR P RE MG AIEHIER, Wik S o 2
R, HIZERRL Dy D G. My Co fo MG, BRI AR,
SRR = TR ERE, =2, u=l e O o 3

As shown in the figure, {1 & il 7,

XZ=XY +YS +SZ. X
D0 = (D, - D,)a, +(D, - D,)e; + D,5.
o
Substituting fA\ «, = 4G|¥| : g Y
e a
4Gm
T =00, r,=0(0-6,), 9 Pl
p E ﬂ |_
= ps[D:mDi]4G[M  m i — 1 Z
DD, )| 6 o= 0, e—— D —» !
i« Ds >

ﬁ=9_g(m](m+ m ]
c D,D, 0 0-0,
The equation can be simplified to 75 f£ =X 7] faift,

1 g
u=y——-—

y y-u,
In typical exoplanet detections, there is a motion of star S relative to star L. As star S
approaches the closest distance to star L and moves away, u decreases with time to a
minimum value up and increases again. By plotting the magnification of the image of star S
versus time, one observes a smooth and relatively broad peak in the magnification curve due
to gravitational lensing by star L. In addition, one can observe a side peak due to the presence
of the planet. For q << 1, estimate the width of this side peak, that is, the range of u in which
the side peak is significant. (1 point)
EMAIH ZAMT RN T, B SXTE LAMXYIEs). B SEEE L 2RISR, A&
JEE I, dRE u B )RR R ME uo RS 0. JEE S SARRIIBORF S I R K 52
R, BOREMZ LT UE S| — AR F0g, ZhE L K5 EsEE
HIEET . 535k, FRATAT USR] — Mg, BT REEAK. T q<< 1, it
XA ) 5 8, Al T DA 25 B0 u BUEVE L. (1)
Plotting u as a function of y, we see in the figure
shown that there are three solutions for each given
u. The side peak is significant when the light rays 3 |
fall within the Einstein radius of the planet.
Following part (c), the Einstein radius is
proportional to VM . Hence the width of the side
peak is of the order ,/q . 3
i ufER y MRS RER, ROFEFNENE 7 ol [t i
FEM) u B =AME . HCRVEAEAT E I E R E

16
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PRV, WA R, NC)MEM, BRIFEAERES VM RIEL. Fik, 0
U {96 JEE B M [

(K) For q << 1, consider the situation that light rays pass very near to planet P, so that the
gravitational lensing by star L becomes relatively insignificant. Calculate the position of star

S where the total magnification of its image diverges, and the behavior of the total
magnification in the neighborhood of this location. (3 points)

4 g << 1, FECEARREIITATE PIIGHL, ERXEN TE L K5 /i@ e AR
R85, WIHEME S BRI S BCRE KB A S IALE, FIXALE T SR Z 14T
HNo (341)
When light rays pass very near to planet P, y = u,. The equation for y becomes
YR AR AT E PR, yaup o y TR

q
y-u,

Usy—

Lety’ =y —upand u’ = u—u, Then the equation becomes u'= y'—ﬂl.

i&Y:y—wﬁﬂWZU—umDMﬁﬁE@E&uwyL%.

Cutyu?+4q

The solutions are 772U y'=~ >

Whenu’ =0, y'= J_r\/a, confirming that the Einstein radius is \/a
w =0, y'etq, BAZESHEER A g .
Following parts (f) and (g), the areal magnifications are FRBEF)A(g)&F, HAKZE N
l(d_y] N u't/u?+4q 1[1+ u' } _ (u'iw/u'2+4q)2 =1[ u?+2q +1]
u'{ du’ 20 2( 77 Ju+4q ) 4wl Ju+aq 2\ |ulut+4q
Total magnification: EUB K%
A=EL_EﬁﬁL_+q+E£_EEEL__q=_iﬁﬂﬁ_ﬂ
2 |u'|/u?+4q 2 |u'|\Ju?+4q |u'] yu?+4q
Hence the total magnification diverges when star S is located at u’ = 0, or u = uj.
R w =088 u=upif, EHCKFREL

When u’ approaches 0,2 u’#ir 0: A — % = %
ul |u-u
p

2. Cosmic Gravitational Waves (25 points) =8 5] /73 (254

In March 2014, scientists operating gravitational wave detectors in the South Pole claimed that
they found evidences of gravitational waves originated from the early universe in the cosmic
microwave background radiation. While the evidence is still being debated, it is interesting to
understand how gravitational waves interact with electromagnetic (EM) waves. To approach this
issue, we start by considering how molecules scatter EM waves.

17
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2014 4 3 H, BAFEWRSI RN ES FRESR, FERRE T s SR, KBk E
T8 B 51 e . BARIESRIEAFE S, H 7RG i an A A T Rl (EMD
BR—DHBEJRE . 7 ACFIXAS R, JRATTE 5675 R& 1 AN A] HIC BB o
(@) An oscillating electric dipole consists of charges oscillating at an angular frequency c.
Specifically, the charges are Q(t) = +Qqcosat, located at (x, y, z) = (0, 0, £s) respectively.
What is the current between them? (1 point)
— MRS RAEN T, BE AR oS B) B . BAACKEL, B aloy Q) =
+Qocosat, f7F (X, Y, 2) = (0, 0, +s). EAIZ BG4 ? (14

I(t) = %(Q0 c0s wt) = —Q, sin .

(b) In spherical coordinates, we denote the components of the magnetic field as B, Byand By, as
shown in figure (A). Calculate B(r, 6, t) according to Biot-Savart’s law at time t and distance
r from the origin making an angle @ with the z axis. Note that due to the finite speed of light c,
the magnetic field at a distant location is due to the time-changing current at an earlier instant.

Hence the retarded magnetic field takes the form B(r,t) = B,(r)cos(at —kr+y), where

k=2 is the wavenumber, and y is the phase shift. Express your answer in terms of the
C

magnitude of the dipole moment p = 2Qs in the limit s approaches 0. Below, your answer to

this part will be denoted as Bgs(r, 6, t). (3 points)

FERRAAAR A, FRATTEL By, By A By oniidmty &, i (A Fos. MAEERRE - 74k

IRERE, WIS By(r, 6, 1), Hirr v ESFE SRR, o ES 2 HIERKIA,

tONIA]. VER, B TOGDCAIRER o 14k, (Rt 2 U5 T 2 — BRI 2 B i
CHHBER 224D o Bk, @8R I 8 B(r,t) = By(r) cos(et —kr+y) , ot

ksg%%@ T AR . 25 iB LUEHAE p = 2Qs ik (B s T 0 Wkeb) .« F
T, VRIEIX DA S 8RR N Bes(r, 6,1).  (341)

(A) z (B) |
| ,ﬁ;}
B, | ; dr
[ / //
B¢ I / /
b
a/r By | /y
e
>y 7
14
7
X

Using Biot-Savart’s law, F FI AR 4 HE B - 55 (R /RE

I(t—r/c)dl xf
B(r,@,t)=f—;J( r2) .

18
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Ul (t—r/c)sing U,Q, Sin(at —kr)2ssin @ Lo, Sin(awt —Kkr)sin &
B,(r,0,t) = > 25 =— 5 =— 5
dnr dnr 4nr
where po = 2Qos.
(c) However, Biot-Savart’s law is only applicable to steady state currents. It is incomplete even
after including the retarded nature of the oscillating current. By considering the wave nature
of the magnetic field, the complete expression of the magnetic field is given by

1'EIE B - Ao REH RS, 258 T IRSTBERKEE RS, E
BRAEREN . W BRI BatE, eI RIEA R

B(r,0,t) =Bg(r,0,t)+B,,.(r,0,1),

where H

d dl ><r
Wave(r 9 t) J|:dt I(t_gj:| r

Derive an expression for the B¢ component of Byayve at (r, 6, t). (3 points)

fﬁ?ﬁl—% Bwavef (r o, t)El/] B¢ %E’J%@ﬁﬁ (3 /\)
B (0.0 = 0 Jd (= oQysin(er - kr)\s'”‘9 = (w Q, cos(at — kr)ﬁ] s

wave

47C

= —Mcos(a)t —kr)siné.
4ncr

(d) Compare the amplitudes of Bgs and Byaye at large distance r. Derive the condition of r such
that Bgs becomes negligible when compared with Byave. (2 points)

HCELF)—L BBSﬂ:l Bwave?IEEtE% rﬁﬁﬁﬁﬁﬁﬁﬂlﬁﬁo ﬁ‘%ﬁﬁa‘ BBS*H Hﬁ Bwave/}E?:Efﬁ)%&x&ﬁwA’ 9%?
rifgE. (240

| Bes(r,0,t) | _ #@p,Sin@/4nr? _% o

| Bwave(r’g!t) | - ﬂoa)z Po sin@/ 4ncr wr
c_ A

= II>>—=—,
®w 2

(e) At large distance r, the electric field at (r, €, t) is mainly due to the electromagnetic induction
by the magnetic field Byave. By considering the electromotive force along the circuit shown in

: . . oE, 0B, oE, . :
figure (B), derive the relation between ar and S Here, o is known as the partial

derivative of E, with respect to r, meaning that other variables such as ¢ and t are considered
0B
fixed. Similarly, 6_t¢ is the partial derivative of B, with respect to t, with other variables

such as r and @ being fixed. You may assume that only the E, component of the electric field
is significant at large distance r. (3 points)

FERRES r ARKI, £E(r, 6, t)Eﬁ%iﬁyI%ﬁé%ﬁ? Buave I FLBAIR N . I HEITE B (B)

R, s O 6E9 'a ¢ 2 %R, K, aiwz N EHAT v 1l

19
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s 5] . oB "
S, B AR ot BT A E . FIREH, a—t’"% BT t i S5,
L rp i g HAh AR R r MO N E R . ARATDMRBERR R r AR K, RIHH EgrE
REMN. (34D
Consider the electromotive force along the circuit. Total electromotive force:
F SN E R B . BN
emf =—E,(r+dr)(r+dr)dé+E,(r)rdé.
Magnetic flux enclosed by the circuit: MR R © ® = (-B,)(rdddr).

Using Faraday’s law, FIHERL €, emf = —(1%).
o8,
—E,(r+dr)(r+dr)dé+E,(r)rd6 = Erdédr.
— Eg(r+dr)—EgT(r)dr+ E,(r)=—2dr
0B
In the limit dr approaches 0, 7& dr & 0 i, %+% = —#.
(f) At large distance r, the electric field is given by E,(r,6,t) = (9) ———=cos(awt—kr). Find A(6). (2
points)
B TR, L E, (1,00 = S Doos(at—kn) . BRI A0 (24D
oB
b 2 Ho®"Po G ot —kr)sin,

ot r
%, = A(@) KAO) sin(at —kr) = KA6) sin(awt —kr).

or r r
E, _ A(9)

2
; =Tcos(a)t—kr)<<% = A(9)=—%p°sin0.
T

(9) The magnitude and direction of the power per unit area of the EM wave are given by the
Poynting vector. Calculate the time-averaged power per unit area at large distance r. This
will be denoted as the radiation intensity I(r). (3 points)

LT 0 s LA T A A 49 S S (K R/ IN AR5 1 ﬂSEE Poynting RKEZEN . WiHRAE S
rARKIY, A A7 T ARSZ N [P AL RR D . ORI VR 98 1(r).  (373)

2
S(r)= 3 E,B, = i{ 47zrp0 cos(wt —kr)sin 9}[ 46;:)0 cos(at —kr)sin 9}

0 Ho

4.2
Ho® Py 2 . 2
=22""9 cos“(wt —kr)sin- 6.
167°r%c (@ )
po Hy@ po
I(r S(r cos’ (et —kr))sin? @ = 2= % sin? g,
(= <()> rc< (@ )> 327°r’c

(h) When an EM wave is incident on a molecule, its electric field E will drive the molecule into
an oscillating dipole moment given by p = aE, where « is the polarizability of the molecule.

20
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(i)

)

In turn, the oscillating dipole will radiate power. This is called a scattering process. Consider
an EM wave incident from the x direction, given by E;j = Exocos(at — kx). If Exo is polarized
at an angle & with the z axis, calculate:

MM A — T, Y E 20 T ERSMERIE p = of, HhaiZo)
THINRASE . BEZARSNEN TR ThA . ZXgE i EU i . 25 B BN X
TIRIANSS, H Ej = Excos(at — k)4t e & Exo MIRIRTT M5 z Bl B 6, kit 5
(h1) the intensity Ix(r) of the radiation scattered to the z direction,

HACES 22 2 7 ) AR S 9 1(r)

(h2) the electric field polarization of the scattered wave along that direction,

T1Z 7 1) YRR B 37 i 3 7 16

(h3) the intensity (l«(r)) of the radiation scattered to the z direction for an unpolarized
incident beam (that is, the polarization angle & has a uniform distribution). (3 points)
FEMRIRAICH CRIWIR A & 39505041 BUR 2 2 77 1 AR S iR B (L (). (343

(h1) If Exo is polarized at an angle & with the z axis, then the dipole moment lies in the yz
plane making an angle & with the z axis. Its intensity is

# Exo EI’WH*'H%‘}E 5 2 BiATE 6, WHBRFEALT yz IS z Blsuffi B 6. FRit RN

4 2

po Ho@ 2
I (r 0 EZ sin 0
(1) = °r c 327r2r c <

(h2) The electrlc field of the scattered waves becomes polarized in the y direction.

AU 1 %%ﬁfﬁﬁ W2 y J7 Al
po'a’®

(h3) <Ix(r)>= Efo<sm 9> o117

Next, consider an EM wave incident from the y direction, given by E; = E,gcos(at — ky). If
Eyo is polarized at an angle & with the z axis, calculate:

TR, BIBHEBBN y TTRIANGSS, B Ei = Eycos(at — ky)Zti. 4 Eyo HIIRS z
A G, AT

(1) the electric field polarization of the scattered wave along the z direction,

T 2 77 ) BSOS B iR 7 17

(12) the intensity (ly(r)) of the radiation scattered to the z direction for an unpolarized incident
beam (that is, the polarization angle &, has a uniform distribution). (2 points)
ERIRAS G CRImR A1 Q3 50 404D BN & 2 77 [ AR S SR BE(Ly(r))e - (243

(i1) The electric field of the scattered waves becomes polarized in the x direction.

ISR ) R D R 7 160 A& X 7 T

(i2) If Eyo is polarized at an angle 4, with the z axis, then the dipole moment lies in the xz
plane making an angle & Its intensity is

By MIiIRS 2 A G, WHRIRFEAL T xz P15 z SR A Q. HE5F RN

0 .

4.2 4 2
Ho® Py o2 Ho®@ & o o2
|y(r)=320—220$|n 9y=mEyosm 49y.
4 2
2 _ Mo x>
<I (r)> 2 77 E <sm 9y>_64712r20 Eyo-

During the rapld expansion of the early universe, gravitational waves are formed. They
consist of quadrupolar temperature oscillations, meaning that the directions of the maxima
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and minima of the oscillations are separated by an angle of /2. Hence to analyze their
effects on EM waves, we consider two incoherent incident beams of EM waves of the same
frequency @/2 7, one from the x direction and the other from the y direction. The amplitudes
of their electric fields are E, and E,q respectively. Suppose the EM radiations in the x and y
directions correspond to temperatures T + AT and T respectively (AT << T and is positive).

(1))

(1,0
FI T H HRE I, RRG i. e SRR RS, 2 E KA. R EWER
BN B KAE AT B MBI T 8 B A2 fEEr . DRI, B A AT I AR e, 3K
1175 RE PRI RN al 22 ER T A, —3OKRE x 5, 55— RNk E y T,

I B L 70932 Exo M Eyoo fBORAE X Ay J7 ) () HLRERE ST 70 XS L TR T + AT

BT (aT<<T, BREM . kb e mize 1

(1,(0)

What is the ratio

? (1 point)

(1,(r)) _T+AT
o) T
(k) The degree of polarization of the scattered radiation is given by T 32 B 48 5 1w R 15

RUORMG
(L) +{1,(r)
Calculate I1. What is the direction of the electric field polarization in the scattered wave? (2

points)

IR, SO SRR T & 42 (249
e, (o)=L TeaT-T AT AT
- <|X(r)>+<|y(r> B <|x(r)>+<|y(f> T T+AT+T  2T+AT 2T

Since (lIx(r)) is stronger, the electric field polarization in the scattered radiation is the y
direction.

(THE END 52»
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