Pan Pearl River Delta Physics Olympiad 2016

2016 年泛珠三角及中华名校物理奥林匹克邀请赛 Sponsored by Institute for Advanced Study, HKUST 香港科技大学高等研究院赞助

Simplified Chinese Part-1 (Total 5 Problems) 简体版卷-1(共5题)

(9:00 am – 12:00 pm, 18 February, 2016)

Please fill in your final answers to all problems on the **summary sheet**.

请在总答案纸上填上各题的最后答案。

There are 5 problems. Please answer each problem using a **new sheet**.

卷一5题,每答1题,须采用新一张纸。

Please answer on each sheet using a **single column**. Do not use two columns on a single sheet.

每页纸请用单一直列的方式答题。不可以在一页纸上以双直列方式答题。

Please answer on only one side of each sheet. Do not use both sides of the sheet.

每张纸单面作答。不可以双面作答。

At the end of the competition, please arrange the <u>summary sheet as the first page</u>, followed by the answers to each problem in sequential order of the problems. If your answer to a problem requires more than one sheet, please arrange the sheets of the same problem in sequential order of the parts.

比赛结束时,请将<u>总答案纸放在首页</u>,随后把答题纸按题目次序排好。若答一题超过一页,请按分部次序排好答题纸。

1. Electrostatic Force (4 marks) 静电力(4分)

Consider a 2017-side regular polygon. There are 2016 point charges, each with charge q and located at a vertex of the polygon. Another point charge Q is located at the center of the polygon. The distance from the center of the regular polygon to its vertices is a. Find the force experienced by Q.

考虑一 2017-边正多边形。其中 2016 个角上各有一点电荷 q。 另有一个点电荷 Q 位于 多边形的中心。 中心到每一个角的距离为 a。 求 Q 所受的力。

2. Capacitors (13 marks)

- (a-c) Consider two clusters of electric charges. Cluster A consists of N charges $q_1, q_2, ..., q_N$, located at positions $\vec{r}_1, \vec{r}_2, ..., \vec{r}_N$ respectively. Cluster B consists of M charges $q'_1, q'_2, ..., q'_M$, located at positions $\vec{r}'_1, \vec{r}'_2, ..., \vec{r}'_M$ respectively.
- (a-c) 考虑两组电荷。组 A 由 N个电荷 $q_1, q_2, ..., q_N$ 组成,并分别位于位置 $\vec{r}_1, \vec{r}_2, ..., \vec{r}_N$ 。组 B 由 M个电荷 $q_1, q_2, ..., q_M'$ 组成,并分别位于位置 $\vec{r}_1', \vec{r}_2', ..., \vec{r}_M'$ 。
- (a) Write the electric potential $\phi_A(\vec{r})$ at position \vec{r} due to the charges in cluster A. (1 mark) 写下于位置 \vec{r} 由组 A 电荷形成的电势 $\phi_A(\vec{r})$ 。(1 分)
- (b) Write the electric potential energy $E_{B|A}$ of cluster B due to the electric potential ϕ_A . (1 mark) 写下组 B 电荷因电势 ϕ_A 产生的电势能 $E_{B|A}$ 。 (1 分)
- (c) What is the relation between $E_{B|A}$ and $E_{A|B}$? (1 mark)

 $E_{B|A}$ 和 $E_{A|B}$ 有何关系?(1 分)

(d) Consider two large conducting plates as shown in Fig. 1a. The upper plate carries a uniform surface charge density σ' and the lower plate is grounded. Find the surface charge density of the lower plate and the potential $\phi'(z)$, where z is the height of an arbitrary location from the lower plate. (5 marks)

考虑如图 1a 所示两块很大的电导板。上板带有均匀面电荷密度 σ' ,而下板则接地。求下板的面电荷密度和电势 $\phi'(z)$,其中z为任意一点距离下板的高度。(5 分)

Figure 1a 图 1 a

Figure 1b 图 1b

(e) A point charge q is placed between two very large grounded parallel conducting plates. If z_0 is the distance between q and the lower plate, find the total charge induced on the upper plate in terms of q, z_0 , and l, where l is the distance between the plates, as shown in Fig. 1b. (5 marks)

如图 1b 所示, 在相距为 l 的两块平行大电导板间放置电荷 q, 其到下板的距离为 z_0 。求上板的总感应电荷。以 q、 z_0 和 l表示你的答案。(5 分)

3. Cannonballs and Bombs (10 marks) 砲彈和炸彈 (10 分)

- (a) Envelope of safety: A ground based cannon can fire a cannonball at a fixed speed of *u* in any direction. The envelope of safety is the curve inside which a target can be hit by the cannonball, and outside which there is no possibility of a target getting hit by the cannonball. Find the equation of the envelope of safety in space. (3 marks)
 - 安全区域边界:一门位于地面的大炮能以固定速率 u 向任何方向发射炮弹。 若目标在安全区域边界内,则有可能被炮弹打中。 若在其外,则不可能被炮弹打中。 求在空中的安全区域边界的方程式。 (3分)
- (b) A bomb explodes at a height of H into many small fragments. It is given that after the explosion the fragments have the same speed u and a uniform angular distribution in all directions. After some time all fragments hit the ground and the collisions with the ground are perfectly inelastic. Find the radius R of the distribution of the debris. (2 marks)

- 一个炸弹在高度 H 处爆炸成很多小碎片。 已知刚爆炸后各碎片以同样的速率 u 和均匀的角分布向各个方向散开。 其后各碎片都坠到地面上。 假设所有碎片与地面的碰撞皆为完全非弹性碰撞。 求炸弹残骸的分布半径 R。 (2 分)
- (c) A bomb explodes on the ground. Its fragments are projected at the same speed u, and the angular distribution is uniform within a narrow angle α with the upward vertical direction. After some time all fragments hit the ground. Let the mass of the bomb be M. Find the radius R of the distribution of the debris up to order α . Calculate the radial density distribution $\rho(r)$ within radius R up to order r^2 , where $\rho(r)2\pi rdr$ is the mass of the debris located at a distance r to r + dr from the centre of the distribution. (5 marks)

[Remark:
$$\tan \varepsilon \approx \varepsilon \left(1 + \frac{\varepsilon^2}{3}\right)$$
 and $\sin \varepsilon \approx \varepsilon \left(1 - \frac{\varepsilon^2}{6}\right)$ for $\varepsilon \ll 1$.]

一个炸弹在地面爆炸。爆炸后各碎片以同样速率 u 射出,角度分布则限在与垂直向上方向的狭小夹角 α 内,而在这范围内角度分布均匀。其后各碎片都坠到地面上。设炸弹的质量为 M。求炸弹残骸的分布半径 R,准确至 α 的第一阶。定义径密度分布 $\rho(r)$,使得 $\rho(r)2\pi rdr$ 为距离残骸中心 r 至 r+dr 范围内的残骸质量。求半径 R 内的 $\rho(r)$,准确至 r 的第二阶。(5 分)

[注: 当
$$\varepsilon \ll 1$$
 时, $\tan \varepsilon \approx \varepsilon \left(1 + \frac{\varepsilon^2}{3}\right)$ 及 $\sin \varepsilon \approx \varepsilon \left(1 - \frac{\varepsilon^2}{6}\right)$ 。]

4. Collisions (14 marks) 碰撞 (14 分)

A thin rod with length L, mass m and uniform density lies on the y-axis with its midpoint at the origin. A point object A with mass m travels with velocity u in the positive x direction hits the rod with impact parameter h, where $-L/2 \le h < L/2$, as shown in Fig. 2a. The collision is perfectly inelastic.

如图 2a 所示,一根长度为 L、质量为 m、密度均匀的幼棒处在 y 轴上。 棒的中心点位于原点。 一质量为 m 的质点 A 以速度 u 向正 x 方向运动,并以碰撞参数 h 与棒碰撞,其中 $-L/2 \le h < L/2$,。 碰撞为完全非弹性碰撞。

Figure 2a 图 2a

Figure 2b 图 2b

- (a) Find the total kinetic energy just after the collision between A and the rod. (6 marks) 求 A 刚与棒碰撞后系统的总动能。(6 分)
- (b) Find the velocity *v* of point C at the top end of the rod as a function of *h*. (2 marks) 求棒上端点 C 的速度 *v* 与 *h* 的函数关系。(2 分)
- (c) Find H such that v(H) = 0. (1 mark) 求 H 使得 v(H) = 0。(1 分)
- (d) Suppose another point object B of mass *m* is located very close to point C, at the left hand side, as shown in Fig. 2b. Further suppose the point object A hits the rod at the lower end. Find the velocity of the point object B just after the rod collides elastically with it. (5 marks) 假设另一质量为 *m* 的质点 B 的位置与棒顶端 C 的左边非常接近,如图 2b 所示。再设点 A 撞到棒的下端。求棒与质点 B 产生完全弹性碰撞后,质点 B 的速度。(5 分)

5. Thermodynamic Cycle (9 marks) 热力学循环 (9 分)

Consider the thermodynamic cycle of an ideal monatomic gas shown in the pV diagram in Fig. 3. The cycle consists of four processes:

- A \rightarrow B: Isobaric expansion at pressure rp, where r > 1
- B \rightarrow C: Isothermal expansion at temperature T_2
- $C \rightarrow D$: Isobaric compression at pressure p
- $D \rightarrow A$: Isothermal compression at temperature T_1

考虑图 3 中所示一种单原子理想气体的热力学循环的 pV 图。 该循环包括四个过程:

- $A \rightarrow B$: 压强 rp 下的等压膨胀, 其中 r > 1
- B → C: 温度 T_2 下的等温膨胀
- C → D: 压强 p 下的等压压缩
- D → A: 温度 T_1 下的等温压缩

Figure 3 图 3

- (a) Write the highest temperature T_H and lowest temperature T_C in the cycle. No proof is required. (1 mark)
 - 无须证明,写下循环中的最高温度 T_H 和最低温度 T_C 。(1分)

(1分)

- (b) Write the efficiency e_C of a Carnot engine operating with a hot reservoir at temperature T_H and a cold reservoir at temperature T_C . (1 mark) 一卡诺热机在温度为 T_H 的高温热库和温度为 T_C 的低温热库间运行。 写下其热效率 e_C 。
- (c) Given that the gas is in thermal contact with a hot reservoir with temperature T_H whenever heat is added to the gas, and in thermal contact with a cold reservoir with temperature T_C whenever heat is removed from the gas, find the efficiency e of an engine running the cycle in the pV diagram. Express your answer in terms of T_C , T_H , p, and r. (5 marks) 已知一热机在循环运行中,气体吸热时永远与温度为 T_H 的热库处于热接触,气体放热时永远与温度为 T_C 的热库处于热接触。求其热效率 e。 以 $T_C \cdot T_H \cdot p$ 和 r 表示你的答案。(5 分)
- (d) Find the ratio $\frac{e}{e_C}$. Hence suggest a parameter regime in which the efficiency approaches that of the ideal engine. (2 marks) 求比例 $\frac{e}{e_C}$ 。根据答案,提出能使热效率趋近理想热机热效率的参数范围。 (2 分)

《THE END 完》