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1. Electrostatic Force (4 marks) g&HE 77 (443)

Consider a 2017-side regular polygon. There are 2016 point charges, each with charge q and
located at a vertex of the polygon. Another point charge Q is located at the center of the
polygon. The distance from the center of the regular polygon to its vertices is a. Find the
force experienced by Q.
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Consider the polygon with a charge q at each vertex. In other words, there are 2017 charges. The
system has a discrete rotational symmetry and hence the force acting on Q must be zero. Now
our system is equivalent to the above system but with a charge —q added to one vertex. Hence the
force is
Qq a
 4meya?
where 4 is a unit vector pointing from the center to the empty vertex.

2. Capacitors (13 marks) B2 (1343)

(a-c) Consider two clusters of electric charges. Cluster A consists of N charges qi, 2, ..., On,
located at positions 74,75, ..., Ty respectively. Cluster B consists of M charges q1, 43, ..., qu »
located at positions 77, 7, ..., Ty, respectively.
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(@) Write the electric potential ¢, () at position 7 due to the charges in cluster A. (1 mark)
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(b) Write the electric potential energy Eg 40f cluster B due to the electric potential ¢,. (1 mark)
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(c) What is the relatlon between EB| aand Eyp? (1 mark)
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Interchanging the mdlces iand j, and the order of summation, we have Egj4 = Ey 5.
(d) Consider two large conducting plates as shown in Fig. 1a. The upper plate carries a uniform
surface charge density ¢’ and the lower plate is grounded. Find the surface charge density of

the lower plate and the potential ¢'(z), where z is the height of an arbitrary location from the
lower plate. (5 marks)
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The surface charge density at the lower plate is —o’
Using Gauss’ law, the electric field between the plates is E = :—'

0
0 z<0,

The potential is ¢'(2) = { &~ 0<z<l,

—1 z > 1.
(e) A point charge q is placed between two very large grounded parallel conducting plates. If zo
is the distance between g and the lower plate, find the total charge induced on the upper plate

in terms of q, zo, and |, where | is the distance between the plates, as shown in Fig. 1b. (5
marks)
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Consider the charge distribution in Fig. 1a to be cluster A, and that in Fig. 1b to be cluster B.

To calculate E4 5, We note that there are electric charges in cluster A located at the upper plate

only, but for cluster B, the electric potential at the upper plate is 0. Hence E, 5 = 0.

To calculate Eg 4, We note that there are electric charges in cluster B located at:

e the lower plate, but ¢, = 0;

e the point charge q, where ¢, = :—;zo;



e the upper plate with charge Q,, to be determined, where ¢, = :—' L.
0

Hence applying the result in part (), g =2 + Qu =1 =0 = Q, = —q 2
3. Cannonballs and Bombs (10 marks) HIZERIYERE (10 43)

(a) Envelope of safety: A ground based cannon can fire a cannonball at a fixed speed of u in any
direction. The envelope of safety is the curve inside which a target can be hit by the
cannonball, and outside which there is no possibility of a target getting hit by the cannonball.
Find the equation of the envelope of safety in space. (3 marks)

RN — 1 ML AR e LUENE 2% u [A{Efe] 7 (A A S - 35 HATAE
LRGN, WA RTREREITH o EEHIN, WA TRe s T« SRAES
) RIS TR - (347)
Consider a target at (x, y). Let the cannonball fired at angle 6 hit this point. Then
x = utcoso,
{y = utsinf — %gtz.
2

gx
2u2cos26’

Eliminating t, y = xtan 6 —
1
cos?

Note that —— = sec’ 8 = 1 + tan? @, we arrive at the quadratic equation in tan 6.

%tanze — xtan6 +%+y = 0.

Outside the envelope, there are no solutions.

Inside the envelope, there are two solutions.

Right on the envelope, there is only one solution.

Setting the discriminant to zero, A= (—x)? — 4%(% + y) =0=>y= —Z‘%xz +5 which

is a parabola.

(b) A bomb explodes at a height of H into many small fragments. It is given that after the
explosion the fragments have the same speed u and a uniform angular distribution in all
directions. After some time all fragments hit the ground and the collisions with the ground
are perfectly inelastic. Find the radius R of the distribution of the debris. (2 marks)
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Let the bomb be located at the origin, x be the horizontal axis and y be the vertical axis, with
2
upward as positive. Using the result of (a), sety = —H, we have —H = — %RZ += =

u 29
R= ’E‘w/u2 + 2gH.

(c) A bomb explodes on the ground. Its fragments are projected at the same speed u, and the
angular distribution is uniform within a narrow angle a with the upward vertical direction.
After some time all fragments hit the ground. Let the mass of the bomb be M. Find the radius
R of the distribution of the debris up to order a. Calculate the radial density distribution p(r)



within radius R up to order r2, where p(r)2nrdr is the mass of the debris located at a
distance r to r 4+ dr from the centre of the distribution. (5 marks)
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X =utcoso,

{y = utsinf —%gtz.
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Substituting 6 = g —candx =7,
u? u? 2u? Z
r = —sin(wr — 2¢) = —sin(2e) = —¢ (1 ——¢ )
g Y g 3
2
Hence R = %a.
2m cos 0dO
2n(1—-cosa)

The angular distribution after the explosion is p(8)d0 = M = p(0) = i—';'cos 6

= p(e) = ﬂcos(z—e) = sine ~ ﬂe(l —f)
p T az 2 ) ) 6/
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4. Collisions (14 marks) R (14 43)

A thin rod with length L, mass m and uniform density lies on the y-axis with its midpoint at the
origin. A point object A with mass m travels with velocity u in the positive x direction hits the
rod with impact parameter h, where —L/2 < h < L/2, as shown in Fig. 2a. The collision is
perfectly inelastic.
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(a) Find the total kinetic energy just after the collision between A and the rod. (6 marks)
K AN SERIEES 2 A0S HI5E © (643)

Initial momentum: p; = mu

Initial angular momentum about origin (clockwise positive): L; = muh

Initial kinetic energy: K; = %muz
Final momentum: py = 2mucy

Final angular momentum about origin: Ly = 2mveyYem + Ieyw Where yey = meh = %
o = ! L* + (h>2+ (h h)z— . L2+1 h?
oM =qpME M) Tm\tTy) Tp™ T

Using the conservation of momentum, mu = 2muvey = vy = %

Using the conservation of angular momentum,
muh = (2m) (E)E+ (imL2 + lmhz)w > w=
2) 2 12 2

Final Kinetic energy:

6uh
L2+6h2’

1 w2 101 1 6uh \> mu? 6h?
Ky =5 @m) (3) +E(EmL tgmh >(L2 T 6h2) "2 <1 Ty 6h2>
(b) Find the velocity v of point C at the top end of the rod as a function of h. (2 marks)
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(c) Find H such that v(H) = 0. (1 mark)
KHERFVH)=0- (153)

_ uL(L+6H) _ I
v(H) = 2(L2+6H2) V=it = 6

2 2



(d) Suppose another point object B of mass m is located very close to point C, at the left hand
side, as shown in Fig. 2b. Further suppose the point object A hits the rod at the lower end.
Find the velocity of the point object B just after the rod collides elastically with it. (5 marks)
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Let w, be the forward velocity of the center of mass of the rod after collision with B.

Let w, be the backward velocity of object B after the collision.

Let w, be the clockwise angular velocity of the rod after collision with B.

Conservation of linear momentum: mu = —mw, + 2mw; = w, = 2w; — U.

Conservation of angular momentum about the origin: muh = —mw, % + Icpywq + 2mwy (g)
i — L2 2l n2 — 2 012 thisimolies — 1y = — X =l _1

Since Iy = > mL® + th = 24me , this implies Su SW2 + 24Lw1 S Wi

Eliminating w,, w; = ;—i(Swl — 2u).

6h?
L2+6h?

2
Conservation of energy: = (1 + ) = %mwzz + %ICwa + % Cmw? =
2 1 5
Euz = EWZZ + ELZ(J)% + W12
Substituting w, and w4, %uz = %(2W1 —u)? + % (Bw, — 2u)? + w2,
This reduces to the quadratic equation 84w? — 92uw; + 25u? =0 = w; = %u or % The

. . . . 25 4
second solution is the velocity before collision. Hence w, = LU= W, = u

5. Thermodynamic Cycle (9 marks) #JJZEEHF (9 47)

Consider the thermodynamic cycle of an ideal monatomic gas shown in the pV diagram in Fig. 3.
The cycle consists of four processes:
A - B: Isobaric expansion at pressure rp, where r > 1
B > C: Isothermal expansion at temperature T,
C - D: Isobaric compression at pressure p
D - A: Isothermal compression at temperature T,
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(@) Write the highest temperature Ty and lowest temperature Tc in the cycle. No proof is
required. (1 mark)
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TH = Tz, Tc = Tl.

(b) Write the efficiency ec of a Carnot engine operating with a hot reservoir at temperature Ty
and a cold reservoir at temperature Tc. (1 mark)
— RGEPWAERES TuBSRAENDRE TeIRIERMERISTT - 5 NHAEE ec -
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(c) Given that the gas is in thermal contact with a hot reservoir with temperature Ty whenever
heat is added to the gas, and in thermal contact with a cold reservoir with temperature Tc
whenever heat is removed from the gas, find the efficiency e of an engine running the cycle
in the pV diagram. Express your answer in terms of T¢, Ty, p, and r. (5 marks)
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InA->B

3 3
Q - AU - W - EnR(TH - Tc) +7‘p(VB - VA) - EnR(TH - Tc) +nR(TH - Tc)

5
= EnR(TH —T¢)
InB->C
nRTy
Ve VenRTy Ve D
Q=-W-= pdV = dV = nRTyln — = nRTyIn —=— = nRTyInr
v vV V nRTy
B Ve B
rp
InC->D



3 3
Q=AU-W= EnR(TC - TH) —p(Ve — VD) = EnR(TC - TH) —nR(Ty —T¢) =

5
= ——nR(Ty = T¢)

InD-> A
nRTp
Va Va TLRTC VD p
Q=-W-= pdV = dV = —nRT:In— = —nRT:In —==— = —nRT;Inr
1% % V VA nRTA
D D T'p

Since AU = 0 in a cycle, work done in a cycle = heat absorbed in a cycle
= Qap + Qpc + Qcp + Qpa =nR(Ty — T¢) Inr.
Heat is input during A > Band B > C, Q45 + Qpc = %nR(TH —T¢) + nRTy Inr.

The efficiency is
nR(Ty — T¢)Inr B (Ty — T¢)Inr

e = =]

(d) Find the ratio ei Hence suggest a parameter regime in which the efficiency approaches that
C

of the ideal engine. (2 marks)
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e Ty — To)l T Tl
_ (Ty c)Inr ( H )= glnr <1
Ty

To make the ratio approaches 1, we can make r > 1 or make Ty — Te < Ty.

(THE END 58)



