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1. Gravitational Lens Simulator (9 marks) 5| 7B E4 (9 77)

The gravitational field of a massive body exercises a lenslike condensing action upon radiation
passing through it. A simulated gravitational lens was constructed of Plexiglas for use in
demonstrating the lens phenomenon.
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According to general relativity, a light ray passing at a distance of closest approach r to the
center of a spherically symmetric body of mass M, will be deflected toward the body through an
angle which, for small deflections, is given by
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where G is the gravitational constant and c is the speed of light. We, therefore, require of our
simulator that it deflects transmitted light through an angle
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where R is a constant. 1£_E=HREFEEL -

The lens, illustrated in cross section in Fig. 1, is designed to be hand held within the range
between roughly one foot and arm’s length from the observer. The object for viewing is assumed
to be at a distance much larger than one meter on the left hand side of the lens. This implies that
one can assume the incident light ray to be normal to the plane front surface of the lens and
refraction is thus assumed to take place entirely at the back surface. The angle of incidence of the
light ray at the back surface is designated by &, the angle of refraction by 8°, and the angle of
deflection by &, which are all assumed to be small angles. The refractive index of the lens is n.
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Figure 1 f—

(a) Derive the expression dx/dr for the slope of the back refracting surface of the lens in terms of
gand n. (4 marks)
WS B ETTHEIRRE didr, FRDUM nFiK. (457)

Using Snell’s law, nsin 6 = sin 6’

By small angle assumption, n6 = 6’

The angle of deflectionisthuse =8"—0 = (n—1)6

We also have tan(—6) = — — dx

= —=tanf
dr/dx dr
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By small angle assumption = = § = ——
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(b) Derive the expression x(r) of the back refracting surface of the lens. Express your answer in
terms of n, R and ry. (3 marks)
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Using e = X, wehave £ = &£ = =
ge= r’ dr  n-1  (n-Dr = ax = (n-Dr’

Integrating, x = f(ni)r dr = %lnr +C

Boundary condition: 0 = ﬁlnr1 +C=>C= —%lnr1
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=>Xx= —lnr ——lnr1 —x=—"1Int
n—-1 n— n—1 71

(c) A light ray is incident at impact parameter r equal to 2 cm. If we require the ray to cross the
lens axis at a horizontal distance of 30 cm from the point at which it departs from the lens,
find R. (1 mark)
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tane === e=tan = =2= R = 2tan"'= = 0.1331 ~ 0.133 cm
30 30 2 30

. . . 2 22
Remark: Also accept answer using small angle approximation: € = tane = — = — : R =

30 30
0.1333 ~ 0.133 cm.
(d) Find the effective gravitational mass of the lens. (1 mark)
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2 812
R =2 =B - QIOBSVEXI0 )V _ 4 489 x 1023 ~ 4.49 x 10%3kg
c2 4G (4)(6.67x10~11)

which is about 6 times the mass of the Moon.
Reference: S. Liebes Jr., Am. J. Phys. 37, 103 (1969).

2. A String and a Mass (19 marks) &R B 13X (19 4)

In this question, all oscillatory motions are assumed to be small.
FEA R, BRBTA E D B MNR .

As shown in Fig. 2, a string of mass m and length | with tension 7z has a mass M attached to the
end. The mass M can slide in a vertical direction on a frictionless rod at x = I. The shape of the
string is described by a function y(x, t). The string is fixed at the origin y(0, t) = 0.
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Figure 2 I —

(a) First assume that mass M is held fixed at y = 0. Write down the general solution y(x, t) for the
standing waves on the string. Express your answer in terms of the given parameters and
arbitrary constants. (4 marks)

BRI E M EE Y = 04b. 5L EIRRE—BE y(x, t). HFRUGERNSH
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A standing wave has a general form y(x, t) = (Asinkx + Bcoskx)sin(wt + §).



We can always choose the zero point of t so that 6= 0.

Hence y(x,t) = (Asinkx + Bcoskx)sinwt.

The boundary conditions y(0, t) = 0 and y(l, t) = 0 impose conditions B=0and kl =nzforn=1,
2,3, ...

In general for a wave = kv and for a string v = /t/p = +/lt/m. General solution:
y(x,t) = Y-y A, sink,x sin w,t, where k,, = nl—n and w,, = \/%kn.

(b) Now assume that mass M can slide up and down on a frictionless rod at x = |. What is the
boundary condition on y(x, t) at x = 1? You can assume that the oscillations are small. (1 mark)
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The force needed to accelerate the mass is given by the tension in the string. Using Newton’s law,

0’y(Lt)  ay(xt)
oz ox |,

(c) Write down an equation for the frequencies of the standing waves on the string when the
mass M is free to slide. You do not need to solve the equation. (2 marks)
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—Mw?Asinklsinwt = —tkAcosklsinwt = Mk? %sinkl = tkcoskl = M%sinkl = coskl
m
kltankl = —
an T

There are infinitely many normal modes.

T

tan x
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(d) If m << M, find the two lowest normal mode frequencies. (2 marks)
AR m << M, $RH ARSI A IE A . (2 77)

First normal mode:

Since kl <<1, tankl = kl and we have
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Second normal mode:
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(e) For m << M, calculate the ratio of the kinetic energy of the string to that of the mass M at the
lowest normal mode frequency. (2 marks)
AR m<<M, W EARIIAIENE G, ZRzhEE S S MBS RerI s, (2 7)
Let A be the amplitude of oscillation of the mass M.
At the first normal mode, the amplitude of oscillation at position x of the string is Ax/I.

Ax d 2
Hence the ratio of the kinetic energies is R = 1T )2 m o [dm
MA Mi?

Note that the numerator is the moment of inertia of a rod about one end.
mi*/3 _ m
Miz2 ~ 3M
(F) If m>> M, find the two lowest normal mode frequency. (2 marks)
W m >> M, o H AR R (E [ RESER . (2 47)

First normal mode:

kltankl = —>>1:>kl —:>w—vk \/7 = \F
m Zl
Second normal mode: kl ~ 2= = w = vk ~ \/Z = 3"f

(g) For m >> M, calculate the ratio of the Kinetic energy of the string to that of the mass M at the
lowest normal mode frequency. (2 marks)
WME m>>M, K EAERARSH IE N T, SZH)hEES FiE M KIS RERIELE]. (2 77)
Let A be the amplitude of oscillation of the mass M.
At the first normal mode, the amplitude of oscillation at position x of the string is Asin(zx/2l).

Hence R =

Asin™) d in22>
Hence the ratio of the kinetic energies is R = J(asin 2) m_Sam_m
MA M 2M

(h) A traveling wave of angular frequency « is generated near the end x = I. It propagates

towards the mass M and is reflected with a phase shift of 7/2. What is the value of o in terms

of z, m, M and I? (4 marks)
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The wave can be written as y(x,t) = Asin(k(x — 1) — wt) + rAsin (k(x -0+ wt+ g)

= Asin(k(x — 1) — wt) + rAcos(k(x — 1) + wt).
Substituting into the boundary condition,

2
MZTf = Mw?A[sin (wt) — 7 cos(wt)],
x=1
—Tz—i/ = tkA[— cos(wt) + r sin(wt)].




For the boundary condition to satisfy for all t, we should have Mw? = tkr and Mw?r = tk =
Mw? Tk

= = Mw? =tk and r = 1. Hence
Tk Mw?

M=o gy==1m
v My M+l L'

3. Maximum Mass of a Star (22 marks) &R AT E (22 47)

Consider a star of mass M and radius R. Assume that its density is uniform.

FEHEN M, PEHNRNER - BEHITERESS -

(a) Its gravitational potential energy U can be calculated by considering the work done in
bringing a thin layer of materials and depositing on the surface of a spherical protostar of
radius r when r gradually grows from 0 to R. Calculate U. Express your answer in terms of G,
M and R, where G is the gravitational constant. (4 marks)
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Work done in depositing a layer of thickness dr on the surface of a protostar is the gravitational
potential energy change of a layer of volume 4=r’dr brought in from infinity to distance r

dU —— Gm(r)

3
pAar®dr, where p :j—ﬂ'\;a IS the density and m(r) = M(%) is the mass of the

protostar of radius r. Hence
R 3 R 2 2
U-_| GM (Lj ol :_4”pc3;|v| J rigr —_4mGMR® _ 3GM*
, I \R 5 5R
(b) Assume that the star is made up of protons and electrons, both behaving as ideal gases. It is
known that during the formation of the star, half of the loss in gravitational potential energy
is converted to thermal energy, while the other half is radiated away. Derive the temperature

T of the star in terms of G, M, R, m and kg, where m is the average mass of protons and
electrons, and kg is the Boltzmann constant. (2 marks)
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Using the conservation of energy, gNkBT Z%(?’CE;SII\?/I ] where N :% is the number of
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(c) Derive the gas pressure Py of the star in terms of G, M and R. (2 marks)
HHESEARNSIEELETT Py, BFEU G MATRER. (277)

p _ NkgT _GM? 3 _3GM’
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protons and electrons. = T =




(d) The virial theorem states that the total pressure in a star is related to the gravitational

potential energy by P = —b% . What is the value of b? (1 mark)

RAELE B E B, BEANEERS I IHRMRRAP = —b% - KbHYH. (177)

2
Since ENkBT =1[3GM j we have > PV :1(—U) -V L
2 2\ 5R 2 2 u 3
(e) At high temperature, photons in the star also contribute to the pressure. Derive the radiation
pressure P, by applying the kinetic theory of gases in a cubic box of volume L?, in which the
momenta of the photons are described by the de Broglie relation. Express your result in terms
of the photon energy density u. (5 marks)
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Consider a box of width L. Let pyx be the momentum of a photon along the x direction.

Change in momentum of the photon when it hits the wall = -2p,.

. L 2L .
Time interval between two successive hits on the wall = 7 where & is the angle between
cCos

X

the photon momentum and the x axis.
Using Newton’s second law, the force on the wall is the rate of change of momenta of the

ccos@x>
2L

photons, and ( ) represents the average over the direction and magnitude of the photon momenta.

Note that for isotropic distributions, <0052 HX> = % Pressure: P. = % = %( pc).

2
photons when they hit the wall F = N<2 P, = N<w>, where N is the number of

Using de Broglie relation, pc :% =hf =&, where ¢ is the photon energy. Hence N{pc) is the

E u
total photon energy. Hence P, = —=—.
Y gy ‘T3 3
(f) It is known that the photon energy density is given by u = aT*, where a is determined from

P .
fundamental constants. Show that Fr oc M. What is the value of ¢? (2 marks)
g
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(9) Calculate the ratio P—' for the Sun. You may use the following parameters: (1 mark)
9
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g
a=7565x 10° JK*m3, G = 6.673 x 10 Nm?kg?, m = 8.368 x 10?® kg, Mgy, = 1.989 x
10 kg, kg = 1.381 x 102 JK .
P, 47(7.565x10'°)(6.673x10"")°(8.368x10*°

r

P 1125(1.381x107%%)*
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(h) For stars more massive than the Sun, the radiation pressure becomes increasingly significant
and the star becomes unstable. This implies that there is an upper limit on the mass of stable
stars. Suppose the radiation pressure becomes equal to 1/3 the gas pressure at this limit.
Calculate the temperature in terms of a, kg, m, M and R. (2 marks)
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(i) Using the virial theorem in part (d), find this upper limit of stellar mass. Express your answer
in units of solar mass. (3 marks)
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Since P, :lpg, 4o _ANKT _GM* . _ SGM” _3GMm
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Combining with the result of part (g),
1
3GMm ( 3Mk, js
= =

20k,R  \ 47mamR®
1 1
4 2 -23\4 2
v 20003k_84 _ (_21(300)(1.381><%101 3) [ —1508x10% kg
972G°m 977(7.565x107°)(6.673x101)%(8.368 x10 %)
= 768 MSun

Remark: Although this estimate is based on the assumption of uniform stellar density, it agrees
with the observation that stars with masses greater than 50 solar masses are rare.

{THE END 52)
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