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Geometric Optics

1
Lens
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1.1
Basic properties 
· Rays parallel to optical axis are focused to the focus point.

· Rays through the focus point become parallel to the optical axis

· Parallel rays are focused onto a point on the focal plane
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1.2
Finding the image of an object formed by a lens

so = object distance to lens, positive/negative if object is on the left/right side of lens

si = image distance to lens, positive/negative if object is on the right/left side of lens

f = focal length (property of individual lens determined by its shape and material, positive/negative for convex/concave lens)


[image: image2.wmf]f

s

s

i

o

1

1

1

=

+



(O.1)
[image: image228.emf]
[image: image3]
[image: image229.emf]I

1

I

2

F

I

1

I

2

F

I

1

I

2

F

I

1

I

2

F

1.3
Finding the image of an object formed by spherical mirror

so = object distance to lens, positive/negative if object is on the left/right side of mirror

si = image distance to lens, positive/negative if object is on the left/right side of mirror
f = focal length (= R/2, where R is the radius of the sphere, positive/negative for concave/convex mirror)
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1.4
Magnification
M = si/so

(O.3)
1.5
Light intensity
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Consider a point light source emitting light uniformly in all directions. The light energy through the sphere of radius r is therefore uniform, and the portion of energy through a circular area of radius a is then 
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. For a lens of radius a at a distance d from a light source the energy flowing through it is 
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As shown, the brightness of the image depends on the size of the lens and the diameter of the aperture. 
Waves

Definition:
Collection of vibrating particles with fixed phase delay between neighbors 
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Wave equation

1.1
Plane wave

The equation
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describes the oscillation motion of a particles at position x. Looking at all positions, this also describes a plane wave propagating along the x-axis, because the equal-phase surface, on which all particles have identical oscillation motion, is a plane. For example, let the phase equal to c, then
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(W.2). 
Equation (x = constant) is a plane in space, and the constant changes linearly with time t.
The plane is moving in space at a speed of 
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Here 
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 is a periodic function of both time t and position x. The spatial period is the wavelength (, i. e.,
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(W.5a).
In other words, the particles at position x are performing the same oscillation motion as the ones at 
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The temporal period is 
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because 
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1.2
Spherical wave
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i. e., the equal-phase surface is a sphere. Spherical waves are emitted by point sources.
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Pulse (shock) wave:

[image: image17.wmf])

(

)

(

)

,

(

0

x

x

f

vt

x

f

t

x

W

-

=

-

=

, with 
[image: image18.wmf]vt

x

=

0

, and v being the propagation speed. 
[image: image19.wmf])

(

0

x

x

f

-

 is a function with maximum at 
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1.3
Wave intensity

The intensity of a wave I is the time average of the square of the oscillation. 
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(Note that cos2( = (1 + cos2()/2)

2
Wave interference

[image: image236.emf]Waves from two sources meet.
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Superposition principle:
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Using Eq. (W.7) we have 
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where the phase difference 
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(W.9A).
The total wave intensity 
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 is therefore different at different locations in space, due to the changes in wave path difference
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Contrast 
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(W.10). 
The contrast M reaches maximum of ‘1’ when A1 = A2. Therefore, two waves of equal amplitude (intensity) will produce interference patterns of the highest contrast.
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The interference problems then become the problems of calculating the path differences 
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 and then the phase difference, which is usually straightforward to solve. For example, in the case of a thin film under normal incidence, the path difference between the waves reflected from the first surface (red arrows) and from the second surface (green arrows) is 2nd, where n is the refractive index and d the thickness. The reflection at the first surface introduces a phase shift (, so the total phase difference is 
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Electrostatics

1
Electric charge

The crucial point in electrostatics is that some physical quantity called “charges” is discovered. The charges are associated with a special force called electric force.

1.1
Coulomb’s Law 
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This is the first Law of Physics on electromagnetism discovered by human beings. It says that the electrostatic force between two charges q1 and q2 separated by distance r is given by
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(E.1)
where k is a constant, and 
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 is the displacement vector pointing from point charge-1 to charge-2. 
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SI Unit of charge: Coulomb(C)

    One coulomb is the amount of charge that is transferred through the cross section of a wire in 1 second when there is an electric current of 1 ampere in the wire.

Notice that the relationship between electric current and electric charges is already assumed in this definition. In SI Unit k is given by
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or 
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For many point charges, the forces satisfy the law of superposition,
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(E.2).

Notice the similarity between the Coulomb’s Law and the Law of Gravitation,
[image: image41.wmf]r

r

m

m

G

F

)

r

2

2

1

12

=

. The main difference is that charges can be positive or negative, whereas masses are always positive. The similarity between the two Laws also enables us to draw some conclusions about Coulomb forces easily. For example, 

A shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell’s charge were concentrated at its center.

If a charged particle is located inside a shell of uniform charge, there is no net electrostatic force on the particle from the shell.
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Example: 

The figure shows two particles fixed in place: a particle of charge q1 = 8q at the origin and a particle of charge q2 = -2q at x = L. At what point (other than infinitely far away) can a proton be placed so that it is in equilibrium? Is that equilibrium stable or unstable? (-q = charge of electron)

Solution:
The forces from the two point charges on the proton must be in opposite direction and of the same magnitude. Since q1 is larger than q2 the proton must be closer to q2 than q1. So Figure (d) is the correct configuration. Let the distance of the proton to q2 be x, the total force on the proton is then
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One can easily verify that the force is zero when x = L. To test the stability of the proton, let x deviate from the equilibrium position by a small amount
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The force is then 
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 < 0. 
The net force is opposite to the displacement
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(Note: 
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Now consider a small deviation 
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The projection of the net force along the y-axis is
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So overall the balance is unstable.

1.2
Spherical Conductors

   If charges Q are placed on a piece of metal, the charge will move under each other’s repulsion to stay as far away from each other as possible. That means they prefer to stay at the surface of metal. For spherical conductors with radius R the final distribution of charges is simple. Because of symmetry, the charges Q will spread uniformly on the surface of the spherical conductor, the surface charge density being 
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1.3
Charge is quantized 

   We now know that like other matters in nature electric charges have a smallest unit, 
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, and all charges are multiple of the smallest unit, i.e. q=ne, 
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etc. When a physical quantity such as charge can have only discrete values, we say that the quantity is quantized. It is in fact not obvious at all why matters in our universe all seem to be “quantized” somehow. 

Example-2
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Identical isolated conducting spheres 1 and 2 have equal charges and are separated by a distance that is large compared with their diameters (Fig.(a)). The electrostatic force acting on sphere 2 due to sphere 1 is
[image: image54.wmf]F
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. 
Suppose now that a third identical sphere 3, having an insulating handle and initially neutral, is touched first to sphere 1 (Fig.(b)), then to sphere 2 (Fig.(c)), and finally removed (Fig.(d)). In terms of magnitude F, what is the magnitude of the electrostatic force 
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 that now acts on sphere 2? (1/2, 1/4, 3/4, 3/8)

Solution:
Suppose originally the two spheres carry charge Q each, after sphere-3 touches sphere-1, sphere-1 and sphere-3 both carry Q/2. After sphere-3 touches sphere-2, both carry 
[image: image56.wmf]3
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. After sphere-3 is removed, the force between sphere-1 and sphere-2 is then 
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 of the original one.
2
Electric Fields 

2.1
Introducing electric field

The concept of “Field” was initially introduced to describe forces between two objects that are separated by a distance (action at a distance). It is convenient to have a way of viewing how the force coming from object-1 felt by another object is “distributed” around object-1. This is particularly easy for charges obeying Coulomb’s Law, since the force felt by charge-2 coming from object-1 is proportional to charge of object-2, i.e. we can write 
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 is the force per unit charge acting on 
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 due to charge-1. Because of linearity of force, this concept can be generalized to the force felt by a test charge q at position 
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 due to a distribution of other charges. In that case, we may write
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where 
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 is the force per unit charge of a charge q felt at position 
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was given a name called electric field. The SI unit for electric field is obviously Newton per coulomb (N/C). 

2.2
Electric Field Lines

  To make it easier to visualize, Michael Faraday introduced the idea of lines of force, or electric field lines. Electric field lines are diagrams that represent electric fields. They are drawn with the following rules: (1) At any point, the direction of a straight field line or the direction of the tangent to a curved field line gives the direction of 
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 at that point, and (2) the field lines are drawn so that the number of lines per unit area, measured in a plane that is perpendicular to the lines, is proportional to the magnitude of 
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Some examples:

a) field lines from a (-) spherical charge distribution  

b) Field lines from two point charges of equal magnitude (i) charges are same (ii) charges are opposite.

[image: image241.emf]Virtual Object

Virtual Image

Virtual Object

Virtual Image

[image: image242.jpg]


   



             
[image: image68]
2.3

Electric field due to different charge distributions

1) Point charge at origin (
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(E.4)
Exercise: what is the electric field at position 
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 from two point charges with magnitude 
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  We use the formula
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(E.5a)
Therefore
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(E.5b),
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(E.5c),
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(E.5d)
where 
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2) Electric dipole

[image: image243.emf]R R R

This is the electric field due to two point charges with magnitude 
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In math, 
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Using the above result, we obtain for the dipole electric field;
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(E.6c).

Notice that at distances far away from origin, the electric field is only proportional to the product qd. The quantity 
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 is called an electric dipole moment. The direction of the dipole is taken to be along the direction from the negative to the positive charge of a dipole. 

2.4
Motion of Charges in electric field

a) Point charge

    A particle with charge q satisfies Newton’s Equation of motion 
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 under an electric field, where m is the mass of the particle. The force the particle feels is
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, followed from the definition of electric field.

b) Dipole

    Since a dipole consists of two opposite charges of equal magnitude, the force acting on a dipole will be zero if the electric field is uniform. However, the forces on the charged ends do produce a net torque 
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 on the dipole in general. The torque about its center of mass is

     

[image: image93.wmf]J

J

J

t

sin

sin

)

2

/

)(

(

sin

)

2

/

)(

(

pE

d

qE

d

qE

-

=

-

-

=



(E.7)
     Notice that the torque is trying to rotate the dipole clockwise to decrease (  in the figure, which is why there is a (-) sign. 

[image: image244.emf] In vector form, 
[image: image94.wmf]E

p

r

r

r

´

=

t

. Notice that associated with the torque is also a potential energy

  
[image: image95.wmf]E

p

pE

d

pE

d

U

r

r

.

cos

sin

2

/

2

/

-

=

-

=

ò

=

ò

-

=

J

J

J

J

t

J

p

J

p


(E.8).

c)
Cross-product of two vectors 
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· For unit vectors along the X-Y-Z axes

[image: image101.wmf]0

0

0

z

y

x

r

r

r

=

´

, 
[image: image102.wmf]0

0

0

x

z

y

r

r

r

=

´

, 
[image: image103.wmf]0

0

0

y

x

z

r

r

r

=

´


(E.10)

[image: image104.wmf]z

y

x

z

y

x

x

y

y

x

z

x

x

z

y

z

z

y

z

y

x

z

y

x

B

B

B

A

A

A

z

y

x

z

B

A

B

A

y

B

A

B

A

x

B

A

B

A

z

B

y

B

x

B

z

A

y

A

x

A

B

A

0

0

0

0

0

0

0

0

0

0

0

0

)

(

)

(

)

(

)

(

)

(

r

r

r

r

r

r

r

r

r

r

r

r

r

r

=

-

+

-

+

-

=

+

+

´

+

+

=

´


(E.11)
Questions

What is the x-component of the electric field at position 
[image: image105.wmf])

,

,

(

z

y

x

r

=

r

 from three point charges with magnitude
[image: image106.wmf]q

, q’ and q”, located at 
[image: image107.wmf],

,

,

0

0

0

z

z

y

y

x

x

r

)

)

)

r

=

 respectively? 
Recall: 
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(b) 
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(c) 
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    (e) 
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4
Electric Potential 

4.1
Conservative force and potential energy

Recall that in Newtonian mechanics, a potential energy can be defined for a particle that obeys Newton’s Law 
[image: image114.wmf]ma
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r

  if the force is conservative. In this chapter, we shall see that the electric force felt by charges (we assume implicitly that charges have mass and obey Newton’s Law) are conservative. Therefore, we can define potential energy for charges moving under electric force. We can also define the electric potential – the potential energy per unit charge, following the introduction of electric field from electric force. First we review what a conservative force is.

Conservative force

[image: image245.emf]
    A conservative force is a force where the work done by the force in moving a particle (that experiences the force) is path independent. It depends only on the initial and final positions of the particle. This is the mathematical property of the force. One can show mathematically that the electric force and the gravity force satisfy the above condition exactly.
  In this case, the work done by the force on the particle can be expressed as minus the difference between the potential energies on the two end points, 
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 is a function of the position of the particle only. The potential energy can be related to the force by noting that the work done is related to the force by 
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(E.12).

The integral is path independent for conservative force. Using multi-variable calculus, it can be shown that the above equation can be inverted to obtain 
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4.2
Electric Potential energy and electric potential

  We can define electric potential energy for a point charge if electric force is conservative. Fortunately we know that electric force is conservative because of its similarity to gravitational force, 
[image: image121.wmf]12

2

12

2

1

12

4

r

r

q

q

F

o

)

r

pe

=

. We know from analogy with gravitational force that the electric potential energy for a charge q1 moving under the influence of another charge q2 should be 
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, and the corresponding electric potential at a distance r from a charge q2 is 
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Direct Evaluation of  
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   The potential energy expression 
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where we shall set the initial point i at infinity and the final point f at a distance r from a fixed charge q2. Notice that the electric potential is given by a similar integral 
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since electric field is the force per unit charge by definition. We shall for simplicity chooses the initial and final points to be on a straight line that extends radially from q2 (see figure).

In general, the work done by the electric field W on a charge q moving from point 
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In this case the integral becomes
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Choosing the reference electric potential to be 
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Equipotential Surfaces

The construction of equipotential surfaces is useful in some cases. Equipotential surfaces are the points in space that have the same electric potential. They usually form closed surfaces in space. For the electric potential from a point charge q, 
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, the equipotential surfaces are surfaces consist of points at the same distance r from the charge, i.e. they are concentric spherical surfaces surrounding the charge. 
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Notice that no net work W is done on a charged particle when the particle moves between any two points i and f on the same equipotential surface. This follows from 
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As a result, the electric force (field) must be perpendicular to the equipotential surface everywhere. To see this we consider an arbitrary infinitesimal displacement 
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 on the equipotential surface. The work done is 
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. This can be satisfied for arbitrary displacement 
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 on the equipotential surface only if the force 
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 is everywhere perpendicular to the equipotential surface.

The figure above shows the equipotential surfaces in several situations. The surfaces can be constructed easily from the electric field lines since they are surfaces perpendicular to the electric field (force) lines.

Potential of a charged Isolated Conductor

Recall that for excess charges distributed on an isolated conductor, all charges must be distributed on the surface such that the electric field on the surface cannot have a component parallel to the surface. (Otherwise the charge will move on the conductor surface until the parallel component disappears)
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Therefore, for any points i and f on the surface of conductor,
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i.e. the surface of an isolated conductor forms a equipotential surface. We show in the figure below the electric potential V(r) and electric field E(r) as a function of distance r from center for a spherical conductor with radius of 1 meter.

Notice that 
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Units of electric potential energy and electric potential:

The SI unit for energy is Joule (J) (1 Joule = 1 Newton ( 1 meter). The SI unit for electric potential is therefore

    1 Volt (V) = 1 Joule per Coulomb (J/C).

This new unit allows us to adopt a more conventional unit for electric field 
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, which we have measured up to now in Newton per Coulomb (N/C). We note that
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We also notice that an energy unit that is often more convenient to use in atomic and subatomic domain is electron-volt (eV). 1 eV = energy equal to the work required to move a single elementary charge e through a potential difference of one volt, or

    1 eV = e ( (1V) = 1.6(10-19C)(1J/C)=1.6(10-19J.

4.3
Electric Potential due to a group of point charges

For many charges, the forces and electric field satisfy the law of superposition,
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Therefore, the electric potential 
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(E.14).

The last equality comes because the final potential is a sum of potentials from single point charges. Notice that electric potential is a scalar and the last sum is a simple algebraic sum of numbers (scalars). This is considerably simpler to evaluate than the sum over electric fields which are vectors. 

Example: electric potential at position 
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  where 
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Evaluating the electric field from V(r)
Recall that for a conservative force, the force can be derived from the potential energy using
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Since 
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Example: 

What is the electric potential at the center of the circle due to electrons in the figures below?
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(Notice that there are 12 electrons around the perimeter in both cases)
Solution:

Since the potential is a scalar, the potentials of all charges simply add up in both cases. The answer is 
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 for both cases.
Exercise: evaluate the electric field for the 2-charge problem from V(r). Show that it gives the same result as what we have obtained previously by directly adding up the electric fields from 2 separate charges.

Electric dipole potential

This is the electric potential due to two point charges with magnitude
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Using the above result, we obtain for the dipole electric potential; 
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where p = qd, and (  is the angle between 
[image: image167.wmf]r
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 and z-axis (see figure).

Notice that in Cartesian coordinate,
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4.5
Electric potential energy of a system of point charges

We have shown that for a pair of charges q1, q2, the electric potential energy is 
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, which is the negative of the work done by the electrostatic force to move one of the charges from infinity (with the other charge fixed) to its position at r12. For a collection of charges, we may define the electric potential energy similarly. We define:

  The electric potential energy of a system of fixed point charges is equal to the work done by an external agent to assemble the system, bring each charge from infinite. 

Let’s see how we can derive the potential energy expression for 3 charges, q1, q2, q3, located at r1, r2, r3, respectively, using the expression for U12 and the principle of superposition.

Our strategy is to bring in the charges one by one, and sum up the energy we needed to bring in all the charges together.

First we bring in charge 1 to position r1. The electric potential energy U1 needed is zero, since there is no other charge around.  

Next we bring in the second charge to position r2. The electric potential energy we need is U2=U12 from definition.

We then bring in the third charge. From the principle of superposition, the force experienced by the third charge is the sum of the forces from the first two charges. Consequently the work done needed to bring in the third charge is equal to sum of the work done against the force of the first wo charges, i.e. U3=U13+U23.

Therefore the total electric potential energy needed to build up the system is

U = U1+U2+U3 = (0)+(U12)+(U13+U23) = U12+U13+U23 

= (U12+U13+U23 +U21+U31+U32)/2,
because U12 = U21 and so on.
In fact, we can continue this construction to show that the electric potential of a system of N charges is
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We have used the fact that Uij = Uji in the last step.

Example
[image: image252.emf]Area Area


The figure shows the electric potential V as a function of x. (a) Rank the five regions according to the magnitude of the x component of the electric field within them in descent order. What is the direction of the field along the x-axis in (b) region-2 and (c) region-4? (d) Indicate the points where charges may be present in the system.

Solution:

(a) The slope of the potential is the electric field. Therefore the electric field in region-2 is the highest, followed by that in region-4. The fields in the other three regions are zero.

(b) In region-2 the field is in –x direction.

(c) In region-4 the field is in x direction.

(d) The charges are in the boundaries of region-2 and region-4.

5
Capacitor 

5.1
Introduction

In the previous few chapters we have learnt about the basic physics in electrostatics. In this and the next few chapters we shall discuss how these physics can be applied in daily life to build electric circuits. We start with a basic circuit device element - capacitor. Crudely speaking, capacitors are devices for storing electric charges. Because of the electrostatic forces, energy is also stored in capacitors at the same time. 

Capacitance

[image: image253.emf]i
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Generally speaking, capacitors are composed of two isolated conductors of any shape. We shall call them capacitor plates. The capacitor is “charged” when equal and opposite amount of charges is put on the two plates.

Because the plates are conductors, they are equipotential surfaces. Moreover, there is a potential difference V between the two plates when the capacitor is charged.

The potential difference between the two plates can be expressed as  
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where the integral is performed along a line joining the plate with positive charge to the plate with negative charge. Since the electric field from a charge distribution is directly proportional to the magnitude of charge, i.e., 
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 , we must have 
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The proportionality constant C is called the capacitance of the capacitor. We shall see that C depends only on the geometry of the plates and not on their charge or potential difference. This is a direct consequence of the linearity of the Coulomb’s Law.

  The SI unit for capacitance is farad. 

  1 farad = 1 F = 1 Coulomb per volt = 1C/V.

5.2
Calculating the Capacitance 

The idea is to apply the formula 
[image: image174.wmf]VEdsEds
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, for a given charge q on the capacitor, where + and – are end points of the conductor. The capacitance is deduced from the relation between V and q. We shall consider situations with high symmetry and will often apply Gauss’ Law to calculate the electric field. (Gauss’s Law will be covered in detail in IPhO training programme)
A Parallel-Plate capacitor

We assume that the plates of our parallel-plate capacitor are so large and so close together that we can “forget” the plates edges, i.e. we treat them as two infinitely large parallel plates put close together. 

[image: image254.emf]
We draw a closed surface as shown in figure, Notice that one side of the surface is inside the conductor where
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. In this case, all electric field come out perpendicular to the surface. Applied Gauss’s Law, we have 
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  We also have 
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(E.17a),
where d = distance between two plates. Therefore, 
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(E.17b).
Notice that the capacitance depends only on geometrical factors, such as the plate area A and plate separate d. We shall see that this remains true in later examples.

Isolated conductors

We can define capacitance to a single isolated conductor by taking (“removing”) one piece of the conductor to infinity. For an isolated sphere of radius a we obtain
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(E.18).

To understand the meaning of this result we look at the equation q/C = V. In the previous cases V is the potential difference between the two pieces of conductors. What is the meaning V in this case ? 

(ans: V is the potential difference between the charged conductor and infinity.
5.3
Capacitors connected in parallel and in series

When there is a combination of capacitors in a circuit, we can sometimes describe its behavior as an equivalent capacitor – a single capacitor that has the same capacitance as the actual combination of capacitors. In this way, we can simplify the circuit and make it easier to analyze. There are two basic configurations of capacitors that allow such a replacement.

Capacitors in parallel

The configuration is shown in the figure.

The equivalent capacitance can be derived by analyzing the applied voltage and charge on each capacitor.

[image: image255.emf]
The applied voltage is the same for the capacitors, i.e., we have 
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(E.19a)
The total charge stored is 
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(E.19b)
for capacitors in parallel.

Capacitors in Series

The configuration is shown in the figure below.

Notice that because of overall charge neutrality within the dashed square, the charge q stored on each capacitor must be the same = charge stored in the equivalence capacitor. The voltage across each capacitor is given by
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The total voltage across the equivalence capacitor is 
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Therefore the equivalent capacitance is given by
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5.4
Energy Stored in Capacitors 

To charge up a capacitor, we need to do work. You may imagine that we need to move the electrons (–e charges) from neutral atoms in one capacitor plate to another. Energy is needed in this process because we have to separate the positive and negative charges from an originally charge neutral configuration.  In practice the work done is usually supplied by a battery.

The total energy needed to charge up a capacitor can be evaluated by noting that the energy needed to move unit charge dq against a potential V is, by definition
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Therefore the work required to bring the total capacitor charge up to final value Q is
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(E.21)
= potential energy (U) stored in a capacitor with charge Q.

Alternatively, using the relation Q = CV, we may also write
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Magnetic Field

1
The B-field of an infinitely long wire 

[image: image257.emf]
Symmetry analysis shows that the B-field must be horizontal and circles around the wire, and depends on r (the distance of the position to the wire) only. Using Ampere’s Law (Ampere’s Law will be covered in the IPhO training programme)
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(M.1).

Example-1
Find the B-field of an infinitely long cylindrical conductor of radius R carrying uniform current density J. 
[image: image258.emf]
Solution:

Take a loop of radius r, as shown (the red or blue circle).

For r > R, the answer is the same as above with I = JπR2.

For r < R, the current within the loop is Jπr2. So according to Ampere’s Law
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2
Force of B-field on current wire and charged particle (Lorentz force) 

Lorentz force on a point charge q is 
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(M.3), 
where 
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is the velocity of the charge.

2.1
Motion of a charged particle in uniform magnetic field

(a) 
Circular motion 

When the 
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 of a particle with mass m and charge q is perpendicular to
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, the force is also perpendicular to
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, and the charge is moving in a circle. The radius of the circle R is determined by
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The period of the circular motion is 
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(M.4)
(b)
General case :
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. The force is in the x-y direction so along the z-axis the particle is moving at constant speed vcos(. Change to the reference frame S’ that is moving at vcos( along z-axis, we then have a particle with velocity
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On a thin wire in uniform B-field, it is 
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Example-2
Force per unit length between two parallel wires carrying currents I1 and I2, and separated by a distance D. 

Solution: 
From Example-1, the magnetic field due to I1 at I2 is 
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, and pointing into the paper plane. The force is then pointing to the right, and is the same along the wire. For any section of the wire of length L, the force is 
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(M.5).
3
Electromagnetic Induction

3.1 Lorentz force on moving charge

For a section of electric current I in a thin wire
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(M.6)

Electromotive force 
[image: image216.wmf]s
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Electromotance
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(M.7).
Conventionally called emf, but it is not really a force. The Chinese translation 電動勢, is more appropriate. 

The emf in a section of moving wire due to B-field is 
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(M.8)

Example-3
[image: image260.emf]
A rod of length L is sliding down a slope in a uniform B-field at speed v. Find emf in the rod.

Solution:

The amplitude of 
[image: image219.wmf])
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 is vBcosθ and its direction is pointing straight out of the paper plane, parallel to the length of the rod. So emf = LvBcosθ
[image: image261.emf]Example-4
The same rod is spinning horizontally at angular speed ω in the B-field around one of its end. Find emf between the two ends of the rod.

Solution:

Take a small section of the rod dr at distance r from the fixed end. The speed of it is ωr so its emf is Bωrdr. Total emf along the whole length is 
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  ans.
1.2 Faraday’s law – A changing magnetic field induces an electric field. 

Their relation is given by:
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(M.9),

where ‘S’ is the surface enclosed by the closed line ‘l’. (More details will be covered in IPhO training programme.)
It can be shown that when a wire loop is moving relative to the B-field, Eqs. (M8) and (M9) are equivalent. However, Eq. (M9) is more general, and works even when there is no relative motion, or the wire loop can be at the location where there is no B-field.
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Example-5
The current in a long solenoid (N turns per unit length) is decreasing linearly with time t, I = I0 - kt. Find the induced E-field.

Solution

By symmetry argument, we can see that the B-field is along the axis of the solenoid. Take an Ampere’s loop-1 outside the solenoid, we find that the B-field is constant. But far away the B-field must be zero, so the B-field outside is zero. Now take loop-2, BL =(0NIL, so B = (0N(I0 – kt) 
Note that outside the solenoid there is no B-field, but the changing B-field induces an E-field so that if the circular wire carries charge, it will spin. Note also that Eq. (M9) is of the same mathematical form as Ampere’s law, when 
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 is viewed as ‘electric current’ and the induced E-field as the ‘magnetic field’. Applying Eq. (M9), the left hand side = 2πrE, where r is the radius of the loop, and the right hand side = (0NkA, where A is the cross section area of the solenoid. So 
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Ans.
1.3 Self and mutual inductance (of coils)

Consider a coil (a loop of wire) carrying current I. If I changes with time, its magnetic field, and therefore the magnetic flux Φ through the coil (See Eq. (M9)) will change, inducing an emf. As the field (hence flux) is proportional to I, we can define a quantity L which depends only on the geometrics of the coil, called self-inductance, such that 

Φ = LI


(M.10),

because 
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(M.10a).

The mutual inductance between two coils, M12 and M21, are similarly defined.

Φ2 = M12I1, and Φ1 = M21I2.  

(M.11)
(Φ2 is the magnetic flux through coil-2 due to the current I1 in coil-1). It can be shown that 
M12 = M21. (M.12)
and they depend only on the coils geometrics and relative position.
Example-6
The magnetic flux through a coil of resistance R changes uniformly from Φ1 to Φ2 over a time interval T, Find the total charge passing through any cross section of the wire.

Solution:

From Eq. (M10) and (M10A) 
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, so Q = IT = (Φ1 – Φ2)/R.
ans.
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