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The materials in this note serve as a guideline for the mechanics topics of HKPhO in addition to the S4-5 syllabus before 2003. Videos of the lecture and the tutorial will be available in http://hkpho.phys.ust.hk/. While the key issues are addressed explicitly, details of secondary importance are mostly left out. Students are encouraged to spend additional time to further digest the contents. Small gaps are left for the students to work out the details, and learn physics through the process. Additional references should be sought to further understand the topics like vectors, elementary calculus, etc., most of which can be found in relevant F6-7 textbooks.
We hope that the pre-training will give a kick start for those who hope to do well in HKPhO 2006 and beyond. We also encourage the trainees to share the materials with their classmates back in schools.
Z. Yang

HKPhO Committee Chairman

Mechanics
1
Vector
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(1.1)
Addition of two vectors: 
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(1.2)
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Dot product of two vectors 
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(1.3)
It is also referred to as the projection of 
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, or vise versa.
[image: image230.jpg]Ve
YA Via

Vi
(a)

()

FIGURE 9-14 Sample Problem 9-11. Three pieces of an ex-
ploded coconut move off in three directions along a friction-
less floor. (a) An overhead view of the event. (b) The same
with a two-dimensional axis system imposed.



Amplitude of the vector
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(1.4)
1.2

Position vector of a particle:
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(1.5). 
If the particle is moving, then x, y, and z are function of time t.
Velocity:
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(1.6)
Acceleration 
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(1.7)
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1.3 Uniform circular motion

Take the circle in the X-Y plane, so z = 0, 
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(1.8)
( is the angular speed. ( is the initial phase. Both are constants.

Using the above definition of velocity (1.6), 
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(1.9),
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Its amplitude is 
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(1.10)
The acceleration is:
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(1.11). 
Its amplitude is 
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2 Relative Motion
[image: image232.jpg]FIGURE 10-14 Sample Problem 10-5. A ballistic pendulum,
used to measure the speeds of bullets.




A reference frame is needed to describe any motion of an object. 
Consider two such reference frames S and S’ with their origins at O and O’, respectively. The X-Y-Z axes in S are parallel to the X’-Y’-Z’ axes in S’. One is moving relative the other.
Note:
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So the velocity is:
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(2.2)
Similar for acceleration:
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(2.3)
This is the classic theory of relativity. If 
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is constant, then 
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, i. e., Newton’s Laws work in all inertia reference frames.
Properly choosing a reference frame can sometimes greatly simplify the problems.
3 Forces
Pull through a rope, push, contact forces (elastic force and friction force), air resistance, fluid viscosity, surface tension of liquid and elastic membrane, gravity, electric and magnetic, strong interaction, weak interaction. Only the last four are fundamental. All the others are the net effect of the electric and magnetic force.
[image: image233.jpg]4
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FIGURE 10-15 Sample Problem 10-6. (a) A karate expert
strikes at a flat object with speed v. (b) Fist and object undergo
a completely inelastic collision, and bending begins. The
fist + object then have speed V. (c) The object breaks when its
center has been deflected by an amount d.



3.1
Tension
Pulling force (tension) in a thin and light rope: 
Two forces, one on each end, act along the rope direction. The two forces are of equal amplitude and opposite signs because the rope is massless. It is also true for massless sticks.
[image: image234.jpg]Before
mvy;

vo; =0

—

m

After

mvyy

mvy; vy,

6

(a)

<

mvy,

mvy;

®)

(C]

FIGURE 10-17 Sample Problem 10-7. A neat proof that in
an elastic collision between two particles of the same mass,
the particles fly off at 90° to each other afterward. For this to
hold true, the target particle must be initially at rest and the

collision must not be head-on.




3.2
Elastics
Elastic contact forces are due to the deformation of solids. Usually the deformation is so small that it is not noticed. The contact force is always perpendicular to the contact surface. In the example both 
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 are pointing at the center of the sphere. 

3.3 
Friction
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FIGURE 10-18 Sample Problem 10-8. Two skaters, Alfred
(A) and Barbara (B), represented with spheres in this simpli-
fied overhead view, have a completely inelastic collision. Af-
terward, they move off together at angle 6, with speed V. The
path of their center of mass is shown. The position of the
center of mass for the indicated positions of the skaters before
the collision is also shown.



The friction force between two contact surfaces is caused by the relative motion or the tendency of relative motion. Its amplitude is proportional to the elastic contact force, so a friction coefficient ( can be defined.

When there is relative motion, the friction force is given by f = (kN, where (k is the kinetic friction coefficient. The direction of the friction is always opposite to the direction of the relative motion.
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When there is no relative motion but a tendency for such motion, like a block is being pushed by a force 
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, the amplitude of f  is equal to F until it reaches the limiting value of (sN  if F keeps increasing, where (s is the static friction coefficient. 

Once the block starts to move, the friction becomes f  = (kN. Usually (k < (s.
3.4
Viscosity
Air resistance and fluid viscous forces are proportional to the relative motion speed and the contact area. A coefficient called viscosity ( is used in these cases.
3.5 
Inertial force
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Inertial force is a ‘fake’ force which is present in a reference frame (say S’) which itself is accelerating. Recall that 
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. So in the S’-frame, if one wants to correctly apply Newton’s Law, she will get
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, i. e., there seems to be an additional force
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(3.1)
acting upon the object.
Example 3.1
A block is attached by a spring to the wall and placed on the smooth surface of a cart which is accelerating. According to the ground frame, the force 
[image: image30.wmf]F

r

acting on the block by the spring is keeping the block accelerating with the cart, so
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. In the reference frame on the cart, one sees the block at rest but there is a force on the block by the spring. This force is ‘balanced’ by the inertial force 
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3.6 
Gravity
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Between two point masses M and m, the force is
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(3.2)
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The gravitation field due to M is 
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(3.3).
The field due to a sphere at any position outside the sphere is equal to that as if all the mass is concentrated at the sphere center. (Newton spent nearly 10 years trying to proof it.)
Potential energy
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(3.4).
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Application of superposition: Uniform density larger sphere with a smaller spherical hole.
Near Earth surface, because the large radius of Earth, the gravitation field of Earth can be taken as constant, and its amplitude is 
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(3.5). 

Its direction is pointing towards the center of Earth, which in practice can be regarded as ‘downwards’ in most cases.
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Example 3.2
The ‘weight’, or the force of the ground on a person on different places on Earth. Take the radius of Earth as R, and the rotation speed being ( (= 2(/86400 s-1).

On the Equator, we have mg - N = ma = m(2R, 

so N = mg - m(2R = m(g - (2R)

At the South Pole (or North Pole), we have N = mg

At latitude (,  by breaking down the forces along the X-direction and Y-direction, we have 
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Solving the two equations, we get
[image: image39.wmf]q

cos

)

(

ma

N

mg

=

-

,
[image: image40.wmf]q

sin

ma

f

-

=

, where 
[image: image41.wmf]q

w

cos

2

R

a

=

. The negative sign of f means that its direction is the opposite of what we have guessed.
One can also break down the forces along the tangential and radial directions to obtain the same answers. One can also take Earth as reference frame and introduce the inertia force to account for the rotational acceleration.
3.7 
Buoyancy
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In a fluid (liquid or gas) of mass density ( at depth H, consider a column of it with cross section area A, then the total mass of the column is (AH, and the gravity on it is (AHg. The gravity must be balanced by the supporting force from below, so the force of the column on the rest of the liquid is F = (AHg and pointing downwards. The pressure
P = F/A = (Hg

(3.6).
Now consider a very small cubic of fluid with all six side area of A at depth H. The force on its upper surface is (AHg and pointing down, the force on its lower surface is (AHg but pointing upwards so the cubic is at rest. However, for the cubic not to be deformed by the two forces on its upper and lower surfaces, the forces on its side surfaces must be of the same magnitude. This leads to the conclusion that the pressure on any surface at depth H is (AHg, and its direction is perpendicular to the surface. One can then easily prove that the net force of the fluid (buoyancy) on a submerged body of volume V is equal (Vg. (See the HKPhO 2003 paper.) The buoyancy force is acting on the center of mass of the submerged portion of the object.
3.8 
Torque
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When two forces of equal amplitude and opposite directions acting upon the two ends of a rod, the center of the rod remains stationary but the rod will spin around the center. The torque (of a force) is introduced to describe its effect on the rotational motion of the object upon which the force is acting. First, an origin (pivot) point O should be chosen. The amplitude of the torque of force 
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where r is the distance between 
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and the origin O. The direction of the torque (a vector as well) is point out of the paper surface using the right hand rule. One can choose any point as origin, so the torque of a force depends on the choice of origin. However, for two forces of equal amplitude and opposite directions, the total torque is independent of the origin.
The general form of torque is defined as
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(3.8), 
which involves the cross-product of two vectors.
4 Oscillations

4.1 
Simple Harmonic Motion
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(4.1)
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(a) Effects of different amplitudes
(b) Effects of different periods
(c) Effects of different phases

Since the motion returns to its initial value after one period T,
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(4.2)
Velocity
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Velocity amplitude:
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(4.4).

Acceleration
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(4.5)
Acceleration amplitude 
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(4.6).

This equation of motion will be very useful in identifying simple harmonic motion and its frequency.

4.2
The Force Law for Simple Harmonic Motion
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Consider the simple harmonic motion of a block of mass m subject to the elastic force of a spring
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Newton’s law:
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(4.8)
Comparing with the equation of motion for simple harmonic motion,
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(4.9)
Simple harmonic motion is the motion executed by an object of mass m subject to a force that is proportional to the displacement of the object but opposite in sign.

Angular frequency:
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Period: 
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Examples 4.1
A block whose mass m is 680 g is fastened to a spring whose spring constant k is 65 Nm-1. The block is pulled a distance x = 11 cm from its equilibrium position at x = 0 on a frictionless surface and released from rest at t = 0.

(a)  What force does the spring exert on the block just before the block is released?

(b)  What are the angular frequency, the frequency, and the period of the resulting oscillation?

(c)  What is the amplitude of the oscillation?

(d)  What is the maximum speed of the oscillating block?

(e)  What is the magnitude of the maximum acceleration of the block?

(f)  What is the phase constant ( for the motion?

Answers:
(a)
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(b)

[image: image67.wmf]1

-

s

 

rad

 

78

.

9

68

.

0

65

=

=

=

m

k

w

 

   

[image: image68.wmf]Hz

 

56

.

1

2

=

=

p

w

f

 



[image: image69.wmf]s

 

643

.

0

1

=

=

f

T

 

(c)
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(f)
At t = 0,
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(2): 
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Example 4.2

At t = 0, the displacement of x(0) of the block in a linear oscillator is – 8.50 cm. Its velocity v(0) then is – 0.920 ms-1, and its acceleration a(0) is 47.0 ms-2.
(a)  What are the angular frequency ( and the frequency f of this system?

(b)  What is the phase constant (?

(c)  What is the amplitude xm of the motion?

(a)
At t = 0,
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( = –24.7o or 180o – 24.7o = 155o.

One of these 2 answers will be chosen in (c).
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Since xm is positive, ( = 155o and xm = 9.4 cm.

(answer)
Example 4.3

A uniform bar with mass m lies symmetrically across two rapidly rotating, fixed rollers, A and B, with distance L = 2.0 cm between the bar’s centre of mass and each roller. The rollers slip against the bar with coefficient of kinetic friction (k = 0.40. Suppose the bar is displaced horizontally by a distance x, and then released. What is the angular frequency ( of the resulting horizontal simple harmonic (back and forth) motion of the bar?
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4.3
Energy in Simple Harmonic Motion
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Kinetic energy:
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Mechanical energy:
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(4.14)
(a) The potential energy U(t), kinetic energy K(t), and mechanical energy E as functions of time, for a linear harmonic oscillator. Note that all energies are positive and that the potential energy and kinetic energy peak twice during every period. (b) The potential energy U(t), kinetic energy K(t), and mechanical energy E as functions of position, for a linear harmonic oscillator with amplitude Xm. For x = 0 the energy is all kinetic, and for x = (Xm it is all potential.

The mechanical energy is conserved.

4.4
The Simple Pendulum
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When the pendulum swings through a small angle, 
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Comparing with the equation of motion for simple harmonic motion, 
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5 The Centre of Mass
5.1
Definition
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The centre of mass of a body or a system of bodies is the point that moves as though all of the mass were concentrated there and all external forces were applied there.

For two particles,
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For n particles,
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In general and in vector form,
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(5.1)
If the particles are in a uniform gravity field, then the total torque relative to the center of mass is zero. The same applies for the inertia force when the particles are in an accelerating reference frame.
Proof:
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5.2
Rigid Bodies
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(5.2)
where ( is the mass density.

If the object has uniform density,


[image: image119.wmf].

V

M

dV

dm

=

=

r



(5.3)
Rewriting 
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(5.4)
Similar to a system of particles, if the rigid body is in a uniform gravity field, then the total torque relative to its center of mass is zero. This is true even when the density of the object is non-uniform. The same applies to the inertia force. The proof is very much the same as in the case for particles. One only needs to replace the summation by integration operations.
5.3
Newton’s Second Law for a System of Particles

In terms of X-Y-Z components,
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(5.5)
[image: image124.jpg]Path of head

FIGURE 9-8 A grand jeté. (Adapted from The Physics of Dance, by Kenneth Laws, Schirmer Books, 1984.)




5.4
Linear Momentum

For a single particle, the linear momentum is
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(5.6)
Newton’s Law:
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(5.7)
This is the most general form of Newton’s Second Law. It accounts for the change of mass as well.
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(5.8)
The change of momentum is equal to the time integration of the force, or impulse.

For a system of particles, the total linear momentum is
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(5.9)
Differentiating the position of the centre of mass,
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(5.10)
The linear momentum of a system of particles is equal to the product of the total mass M of the system and the velocity of the centre of mass.

Apply Newton’s Law’s to the particle system,
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According to the Third Law, 
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and
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(5.12)
Newton’s law:
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Hence
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(5.15)
The total momentum of a system is conserved if the total external force is zero.
5.5 Rigid body at rest

The necessary and sufficient conditions for the balance of a rigid body is that net external force = 0, and the net torque due to these external forces = 0, relative to any origin (pivot). Choosing an appropriate origin can sometimes greatly simplify the problems. A common trick is choosing the origin at the point where an unknown external force is acting upon.
[image: image253.emf]=

1

r



2

r



1

r



2

r



O

O

O

-

=

1

r



2

r



1

r



2

r



O

O

O

-

Example 5.1
[image: image254.emf]A uniform rod of length 2l and mass m is fixed on one end by a thin and horizontal rope, and on the wall on the other end. Find the tension in the rope and the force of wall acting upon the lower end of the rod.

Answer:

The force diagram is shown. Choose the lower end as the origin, so the torque of the unknown force 
[image: image140.wmf]F

r

is zero. By balance of the torque due to gravity and the tension, we get

mglsin(  - Tlcos(  = 0, or T = mg tan(
Breaking 
[image: image141.wmf]F

r

along the X-Y (horizontal-vertical) directions, we get Fx = T, and Fy = mg.

It is interesting to explore further. Let us choose another point of origin for the consideration of torque balance. One can easily verify that with the above answers the total torque is balanced relative to any point of origin, like the center of the rod, or the upper end of the rod. 

Can you prove the following?
If a rigid body is at rest, the total torque relative to any pivot point is zero.

5.6
Conservation of Linear Momentum

If the system of particles is isolated (i.e. there are no external forces) and closed (i.e. no particles leave or enter the system), then
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Law of conservation of linear momentum:
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Example 5.2

Imagine a spaceship and cargo module, of total mass M, traveling in deep space with velocity vi = 2100 km/h relative to the Sun. With a small explosion, the ship ejects the cargo module, of mass 0.20M. The ship then travels 500 km/h faster than the module; that is, the relative speed vrel between the module and the ship is 500 km/h. What then is the velocity vf of the ship relative to the Sun?
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Using conservation of linear momentum,
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= 2100 + (0.2)(500)

= 2200 km/h (answer)

Example 5.3

Two blocks are connected by an ideal spring and are free to slide on a frictionless horizontal surface. Block 1 has mass m1 and block 2 has mass m2. The blocks are pulled in opposite directions (stretching the spring) and then released from rest.

(a) What is the ratio v1/v2 of the velocity of block 1 to the velocity of block 2 as the separation between the blocks decreases?

(b) What is the ratio K1/K2 of the kinetic energies of the blocks as their separation decreases?

Answer
[image: image256.emf](a) Using conservation of linear momentum,
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(b) 
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Example 5.4

A firecracker placed inside a coconut of mass M, initially at rest on a frictionless floor, blows the fruit into three pieces and sends them sliding across the floor. An overhead view is shown in the figure. Piece C, with mass 0.30M, has final speed vfc=5.0ms-1.

(a)  What is the speed of piece B, with mass 0.20M?

(b)  What is the speed of piece A?

Answer:[image: image257.emf]
(a) Using conservation of linear momentum,
(b) 
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(2)
mA = 0.5M, mB = 0.2M, mC = 0.3M.

(2): 
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 (answer)

(b) (1): 
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(answer)

5.7
Elastic Collisions in One Dimension

In an elastic collision, the kinetic energy of each colliding body can change, but the total kinetic energy of the system does not change.

In a closed, isolated system, the linear momentum of each colliding body can change, but the net linear momentum cannot change, regardless of whether the collision is elastic.
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In the case of stationary target, conservation of linear momentum:
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Conservation of kinetic energy:
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Rewriting these equations as
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Dividing,
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We have two linear equations for  v1f and v2f. Solution:
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Motion of the centre of mass:


[image: image166.wmf].

1

2

1

1

2

1

i

cm

v

m

m

m

m

m

P

v

+

=

+

=


Example 5.5

In a nuclear reactor, newly produced fast neutrons must be slowed down before they can participate effectively in the chain-reaction process. This is done by allowing them to collide with the nuclei of atoms in a moderator.

(a) By what fraction is the kinetic energy of a neutron (of mass m1) reduced in a head-on elastic collision with a nucleus of mass m2, initially at rest?

(b) Evaluate the fraction for lead, carbon, and hydrogen. The ratios of the mass of a nucleus to the mass of a neutron (= m2/m1) for these nuclei are 206 for lead, 12 for carbon and about 1 for hydrogen.

Answer
(a) Conservation of momentum
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For elastic collisions,
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Dividing (1) over (2), 
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Fraction of kinetic energy reduction
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 (answer)
[image: image260.emf]
(b) For lead, m2 = 206m1,
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For carbon, m2 = 12m1,

Fraction 
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For hydrogen, m2 = m1,
Fraction 
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 (answer)

In practice, water is preferred.

5.8
Inelastic Collisions in One Dimension

In an inelastic collision, the kinetic energy of the system of colliding bodies is not conserved. 
In a completely inelastic collision, the colliding bodies stick together after the collision.
However, the conservation of linear momentum still holds.
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Examples 5.6
The ballistic pendulum was used to measure the speeds of bullets before electronic timing devices were developed. Here it consists of a large block of wood of mass M = 5.4 kg, hanging from two long cords. A bullet of mass m = 9.5 g is fired into the block, coming quickly to rest. The block + bullet then swing upward, their centre of mass rising a vertical distance h = 6.3 cm before the pendulum comes momentarily to rest at the end of its arc.

(a) What was the speed v of the bullet just prior to the collision?

(b) What is the initial kinetic energy of the bullet? How much of this energy remains as mechanical energy of the swinging pendulum?
Answer
(a) Using conservation of [image: image261.emf]momentum during collision,
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Using conservation of 

energy after collision,
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(b) Initial kinetic energy
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Final mechanical energy
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(only 0.2%) (answer)

Example 5.7

(The Physics of Karate) A karate expert strikes downward with his fist (of mass m1 = 0.70 kg), breaking a 0.14 kg wooden board. He then does the same to a 3.2 kg concrete block. The spring constants k for bending are 4.1 
[image: image188.wmf]´

 104 Nm-1 for the board and 2.6 

 106 Nm-1 for the block. Breaking occurs at a deflection d of 16 mm for the board and 1.1 mm for the block.

(a) Just before the board and block break, what is the energy stored in each?

(b) What fist speed v is required to break the board and the block? Assume that mechanical energy is conserved during the bending, that the fist and struck object stop just before the break, and that the fist-object collision at the onset of bending is completely inelastic.
Answer
(a) For the board, 
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For the block, 
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(b)
For the board, first the fist and the board undergoes an inelastic collision. Conservation of momentum:
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(1)
Then the kinetic energy of the fist and the board is converted to the bending energy of the wooden board. Conservation of energy:

(2): 
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For the concrete block,
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The energy to break the concrete block is 1/3 of that for the wooden board, but the fist speed required to break the concrete block is 20% faster! This is because the larger mass of the block makes the transfer of energy to the block more difficult.

5.9
Collisions in Two Dimensions

[image: image263.emf]
Conservation of linear momentum:

x component:
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y component:
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Conservation of kinetic energy:
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Typically, we know 
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Examples 5.8
Two particles of equal masses have an elastic collision, the target particle being initially at rest. Show that (unless the collision is head-on) the two particles will always move off perpendicular to each other after the collision.
[image: image264.jpg]!




Using conservation of momentum,
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The three vector form a triangle.

In this triangle, cosine law:
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(1)

Using conservation of energy:
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(1) – (2): 
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Example 5.9

Two skaters collide and embrace, in a completely inelastic collision. That is, they stick together after impact. Alfred, whose mass mA is 83 kg, is originally moving east with speed vA = 6.2 km/h. Barbara, whose mass mB is 55 kg, is originally moving north with speed vB = 7.8 km/h.

(a) What is the velocity 
[image: image215.wmf]V

v

 of the couple after impact?

(b) What is the velocity of the centre of mass of the two skaters before and after the collision?

(c) [image: image265.emf]What is the fractional change in the kinetic energy of the skaters because of the collision?

(a) Conservation of 

momentum:
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(b) Velocity of the centre of mass is not changed by the collision. Therefore V = 4.9 km/h and ( = 40o both before and after the collision. (answer)

(c) Initial kinetic energy 
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Final kinetic energy 
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Fraction 
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6 General equations of motion in the X-Y plane with constant forces
6.1 General formulae
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(6.2)
These general formulae can be applied to any situations, once the initial conditions (x0, y0, vx0, vy0) are given.
A word of caution: Friction forces are not always ‘constant’. Pay attention to their directions because they change with the direction of the velocity.

6.2
Projectile motion near Earth surface
The only force on the object is the gravity which is along the –Y direction. Accordingly, we have
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(6.3)
for the velocity and
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 (6.4)

for the position.
These general formulae can be applied to any situations, once the initial conditions (x0, y0, vx0, vy0) are given.
.end.
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