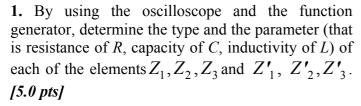
Experimental Competition - Problem No. 2 Black box


APPARATUS AND MATERIALS

- 1. A double beam oscilloscope.
- 2. A function generator capable to generate sine, triangle and square waves over the 0.02 Hz to 2 MHz range.
- 3. A "Black box" with two groups of connectors: the ABCD group and A'B'C'D' group. Besides, there are also two connectors for the standard resistor $R_n = 5 \text{ k}\Omega$, which is isolated from the two groups.
- 4. Conductors of negligible resistance.
- 5. Graph paper.

Warning: You are not allowed to open the black box.

EXPERIMENT

In the black box, there are two groups of passive elements (that are elements of the types: resistor R, capacitor C or inductor (induction coil) L). The first group consists of three elements Z_1, Z_2, Z_3 connected in a star circuit as shown in Figure 1. The elements are led out to the connectors A, B, C and D, with A - the common connector of the ABCD group. The second group consists of three elements Z_1', Z_2', Z_3' connected in the same manner to connectors A', B', C' and D', with A'- the common connector of the A'B'C'D' group (see Figure 2).

- **2.** Connect five points B, C, B', C' and D' together. We obtain a new black box with terminals DD'A' (called DD'A').
 - a. Draw the electric circuit of this black box.
- b. Apply a sine wave from the generator to connectors D and A'.

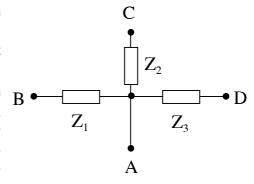


Figure 1

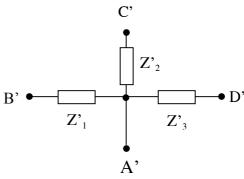


Figure 2

Plot a graph of the ratio of the voltage amplitudes $K = \frac{U_{\rm D'A'}}{U_{\rm DA'}}$ and the phase shift φ

between these voltages as functions of the frequency f of the signal.

- c. The graphs possess a particular point at a certain frequency f_0 . Determine the value of the frequency f_0 , the ratio $K = \frac{U_{\text{D'A'}}}{U_{\text{DA'}}}$ and the phase shift φ at this frequency.
- d. Derive the relation between f_0 and the parameters of the elements in the black box and calculate the values of f_0 . [5.0 pts]