Theoretical Question 3

This problem consists of four not related parts.

- **A. [2.5 points]** The Mariana Abyss in the Pacific Ocean has a depth of $H = 10920 \, m$. Density of salted water at the surface of the ocean is $\rho_0 = 1025 \, kg / m^3$, bulk modulus is $K = 2,1 \cdot 10^9 \, Pa$, acceleration of gravity is $g = 9.81 \, m/s^2$. Neglect the change in the temperature and in the acceleration of gravity with the depth, and also neglect the atmospheric pressure.
 - A1) Find the relation between the density $\rho(x)$ and pressure P(x) at the depth of x.
 - A2) Find the numerical value of the pressure P(H) at the bottom of the Mariana Abyss. You may use iterative methods to solve this part.

Note: The fluids have very small compressibility. Compressibility coefficient is defined as

$$\kappa = -\frac{1}{V} \left(\frac{dV}{dP} \right)_{T=const}$$

Bulk modulus *K* is the inverse of κ : $K=1/\kappa$.

- **B.** [2.5 points] Light mobile piston separates the vessel into two parts. The vessel is isolated from the environment. One part of the vessel contains $m_1 = 3g$ of hydrogen at the temperature of $T_{10} = 300$ K, and the other part contains $m_2 = 16$ g of oxygen at the temperature of $T_{20} = 400$ K. Molar masses of hydrogen and oxygen are $\mu_1 = 2 g/mole$ and $\mu_2 = 32 g/mole$ respectively, and $R = 8.31J/(K \cdot mole)$. The piston weakly conducts heat between oxygen and hydrogen, and eventually the temperature in the system equilibrates. All the processes are quasi stationary.
 - B1) What is the final temperature of the system *T*?
 - B2) What is the ratio between final pressure P_f and initial pressure P_i ?
 - B3) What is the total amount of heat Q, transferred from oxygen to hydrogen?
- C. [2.5 points] Two identical conducting plates α and β with charges -Q and +q respectively (Q > q > 0) are located parallel to each other at a small distance. Another identical plate γ with mass m and charge +Q is situated parallel to the original plates at distance d from the plate β (see fig 1). Surface area of the plates is S. The plate γ is released and can move freely, while the plates α and β are kept fixed. Assume that the collision between the plates β and γ is elastic, and neglect the gravitational force and the boundary effects. Assume that the charge has enough time to redistribute between plates β and γ during the collision.

- C1) What is the electric field E_1 acting on the plate γ before the collision with the plate β ?
- C2) What are the charges of the plates Q_{β} and Q_{γ} after the collision?
- C3) What is the velocity v of the plate γ after the collision at the distance d from the plate β ?

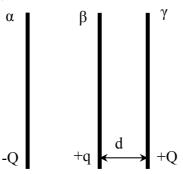


Fig. 1

- **D.** [2.5 points] Two thin lenses with lens powers D_1 and D_2 are located at distance L = 25cm from each other, and their main optical axes coincide. This system creates a direct real image of the object, located at the main optical axis closer to lens D_I , with the magnification $\Gamma'=1$. If the positions of the two lenses are exchanged, the system again produces a direct real image, with the magnification $\Gamma''=4$.
 - D1) What are the types of the lenses? On the answer sheet you should mark the gathering lens as «+», and the diverging lens as «-».
 - D2) What is the difference between the lens powers $\Delta D = D_1 D_2$?