Theoretical Competition

Page 1 of 2

Theoretical Question 1: Particles and Waves

MARKING SCHEME

Total	Mork(c)	Marking Schame for Angwers	
	Mark(s)	Marking Scheme for Answers	
Part A	(a) 1.1	(i) Q in terms of m , M , p_1 , p_{2x} , and p_{2y} .	
4.0	1.1	\triangleright 0.2 for expression of Q	\rightarrow (a-2) [†]
		(ii) Plot of condition relating p_1 , p_{2x} , and p_{2y} .	
		> 0.2 for circle and the position of its center	
		> 0.1 for intersection point $(m - M)p_1/(m + M)$	\rightarrow (a-3)
		\triangleright 0.1 for intersection point p_1	\rightarrow (a-3)
		\triangleright 0.3 for labeling regions for $Q = 0$, $Q > 0$, and $Q < 0$ (0.1)	each)
		Allowed regions of Q .	
		\triangleright 0.2 for allowed regions: $Q > 0$ and $Q = 0$ (0.1 each)	
	(b) 2.9	(i) Equation relating x to Q , θ , d_0 , m , k , M , p_1 and p_2 .	
		> 0.2 for correctly stating he energy conservation	\rightarrow (a-5)
		> 0.2 for correct rotational energy expression	\rightarrow (a-6)
		\triangleright 0.3 for expression of Q	\rightarrow (a-7)
		(ii) Threshold value p_c in terms of m , M , and p_1 .	
		\triangleright 0.3 for $\alpha_{\min} = 0$	
		\triangleright 0.4 for $\alpha_{\rm max}$	\rightarrow (a-12)
		\triangleright 0.4 for expression of p_c .	\rightarrow (a-13)
		Sketch of σ versus p_2 .	
		\triangleright 0.4 for σ increasing with p_2 quasi-linearly and becoming l	evel
		beyond $p_c \rightarrow (a-14)$	
		\triangleright 0.4 for range of p_2	\rightarrow (a-9)
		> 0.3 for range of $\sigma = (0,1)$	
Part B	(c) 2.2	Period of vibration T .	
3.0		$ ightharpoonup 0.5 ext{ for } T = 2L/c$	\rightarrow (b-4)
		Shape of the string at $t = T/8$.	
		> 0.5 for decomposing the triangle into two traveling waves	
		> 0.5 for correct shape	\rightarrow (b-5)
		\triangleright 0.3 for correct lengths $L/4$, $L/2$ and $L/4$	
		\triangleright 0.2 for correct height $h/2$	
		\triangleright 0.2 for $\tan\theta = 2h/L$	

Theoretical Competition

2010 APhO
TAIPEL TAIWAN

Question Number 1

Page 2 of 2

25 April 2010 (Document Released: 14:30, 4/24)

	,	
(d) 0.8	The total mechanical energy E .	
	> 0.4 for expression of $E = 2\mu h^2 c^2/L$ (for all cases below)	\rightarrow (b-7)
	For the remaining 0.4 point:	
	case 1: calculating the work done by normal force	
	> 0.2 for correct expression of the normal force	\rightarrow (b-6)
	\triangleright 0.2 for correct relation of E to the normal force	
	or	
	case 2: calculating the potential energy	
	> 0.4 for correct form of the potential energy	→(b-7')
	or	
	case 3: calculating the kinetic energy	
	> 0.4 for calculating velocity correctly	→(b-7")
(e) 2.2	Distance (in units of Mpc) of the star from us.	
	> 1.0 for $L(t_e) = \int_{t_e}^{t_0} \frac{a(t_e)}{a(t)} c dt$	→(c-3)
	> 0.5 for $L(t_e) = \frac{c}{H} (1 - \exp[H(t_e - t_0)])$	\rightarrow (c-3)
	> 0.4 for $\exp[H(t_0 - t_e)] \approx 1.200$	\rightarrow (c-4)
	> 0.3 for value of $L(t_e) \approx 690 \text{ Mpc}$	\rightarrow (c-5)
(f) 0.8	The receding velocity (in units of c) of the star.	
	> 0.3 for $L(t_0) = \frac{a(t_0)}{a(t_e)} L(t_e)$ or $L(t_0) = \frac{\lambda(t_0)}{\lambda(t_e)} L(t_e)$	\rightarrow (c-5)
	\triangleright 0.2 for expression of $v(t_0)$	$\rightarrow (c-5)$ $\rightarrow (c-7)$
	> 0.3 for value of $v(t_0) \approx 0.200 c$	\rightarrow (c-7)
	(e) 2.2	> 0.4 for expression of $E = 2\mu h^2 c^2/L$ (for all cases below) For the remaining 0.4 point: case 1: calculating the work done by normal force > 0.2 for correct expression of the normal force or case 2: calculating the potential energy > 0.4 for correct form of the potential energy or case 3: calculating the kinetic energy > 0.4 for calculating velocity correctly (e) Distance (in units of Mpc) of the star from us. 2.2 > 1.0 for $L(t_e) = \int_{t_e}^{t_0} \frac{a(t_e)}{a(t)} c dt$ > 0.5 for $L(t_e) = \frac{c}{H}(1 - \exp[H(t_e - t_0)])$ > 0.4 for exp[$H(t_0 - t_e)$] ≈ 1.200 > 0.3 for value of $L(t_e) \approx 690$ Mpc (f) The receding velocity (in units of c) of the star. > 0.3 for $L(t_0) = \frac{a(t_0)}{a(t_e)} L(t_e)$ or $L(t_0) = \frac{\lambda(t_0)}{\lambda(t_e)} L(t_e)$ > 0.2 for expression of $v(t_0)$

[†]The equation number(s) at the end of a line refers to equation(s) in the SOLUTION sheets.