

Theoretical Question 2: Strong Resistive Electromagnets

MARKING SCHEME

Total	Mark(s)	Marking Scheme for Answers	
Part A	(a)	<i>x</i> -component $B(x)$ of magnetic field (in terms of a, D, I, ℓ, μ_0).	
1.4	1.0	▶ 0.2 for magnetic field $d\vec{B}$ from a current loop.	→(a-1)†
		> 0.2 for expressing $B(x)$ as a definite integral.	→(a-2)
		\triangleright 0.2 for carrying out he integration.	→(a-2)
		> 0.3 for expression of $B(x)$.	→(a-2)
		> 0.1 for sign of $B(x)$ or direction of magnetic field.	
	(b) 0.4	Current I_0 (in terms of $a, D, B(0), \ell, \mu_0$) to make $B(0) = 10.0$ T.	
		> 0.2 for expression of I_0 .	→(b-2)
		▶ 0.1 for significant figure (or mantissa) with first 2 digits correct	ct. (b-2)
		➤ 0.1 for unit and exponent.	
Part B	(c) 1.2	Outward normal force per unit length $\Delta F_n / \Delta s$ (in terms of a, D' ,	I, μ_0).
20		▶ 0.6 for $\bar{B} = \frac{1}{2}B(0)$.	→(c-1)
5.0		▶ 0.2 for $B(0)$ (when $\ell \to \infty$) = $\mu_0 I/a$.	→(b-1)
		▶ 0.2 for normal force on wire $\Delta F_n = I\overline{B}\Delta s$.	→(c-2)
		▶ 0.2 for expression of $\Delta F_n / \Delta s$.	→(c-2)
	0.6	Tension F_t along the wire (in terms of a , D' , I , μ_0).	
		\triangleright 0.2 for resultant of tension forces − <i>F</i> _t Δ <i>θ</i> .	→(c-3)
		> 0.2 for equilibrium condition $\Delta F_n = F_t(2\Delta s/D')$.	→(c-4)
		> 0.2 for expression of tension $F_{\rm t}$.	→(c-4)
	(d) 0.8	Current $I_{\rm b}$ at breaking of the turn (in terms of $a, b, D, \sigma_{\rm b}, \mu_0$).	
		► 0.2 for tensile stress $F_{\rm t}/(ab) = \sigma_{\rm b}$.	→(d-1)
		> 0.2 for $D' = 1.60 D$.	\rightarrow (d-2)
		> 0.2 for expression of $I_{\rm b}$.	→(d-3)
		\triangleright 0.1 for significant figure (or mantissa) with first 2 digits correct	ct. (d-3)
		0.1 for unit and exponent.	
	0.4	Magnetic field B_b at 0 when the current is I_b .	
		▶ 0.2 for expression of $B_{\rm b}$.	→(d-4)
		\triangleright 0.1 for significant figure (or mantissa) with first 2 digits correct	ct. (d-4)
		0.1 for unit and exponent.	

Theoretical Competition

25 April 2010 (Document Released: 14:30, 4/24)

Part C	(e) 0.5	Power density of heat generation in the coil.	
		> 0.1 for expression of current density J in the wire,	→(e-1)
		or volume τ of the wire.	→(e-3)
		➢ 0.2 for expression of power density.	\rightarrow (e-2) or (e-7)
		> 0.1 for significant figure (or mantissa) with first 2 dig	gits correct. (e-6)
		> 0.1 for unit and exponent.	
	(f)	Time rate of change \dot{T} of temperature in the coil.	
	0.5	> 0.1 for heat capacity per unit volume $\rho_m c_p$,	\rightarrow (f-1)
		or heat capacity Mc_p .	\rightarrow (f-3)
		> 0.2 for expression of \dot{T} .	\rightarrow (f-2) or (f-4)
		> 0.1 for significant figure (or mantissa) with first 2 dig	gits correct. (f-2)
		0.1 for unit and exponent.	
Part D	(g)	Expressions for the inductance L and resistance R of the	e coil.
1.6	0.6	> 0.1 for flux ϕ_B of a single trn.	→(g-1)
4.6		> 0.1 for definition of $L = N\phi_B/I$.	→(g-2)
		\succ 0.2 for expression of <i>L</i> .	→(g-2)
		> 0.2 for expression of R .	→(g-3)
	0.4	Values of the inductance <i>L</i> and resistance <i>R</i> of the coil.	\rightarrow (g-2) and (g-3)
		> 0.1*2 for significant figure (or mantissa) with first 2 of	digits correct.
		> $0.1*2$ for unit and exponent.	
	(h) 0.8	Expressions for α and ω (in terms of <i>R</i> , <i>L</i> , and <i>C</i>).	
		> 0.1 for bop equation for voltage.	→(h-1)
		> 0.1 for conditions on α and ω .	→(h-4), (h-5)
		> 0.3 for expression of α .	→(h-7)
		> 0.3 for expression of ω .	→(h-9)
	0.4	Values of α and ω . –	→(h-7) and (h-10)
		> 0.1*2 for significant figure (or mantissa) with first 2 of	digits correct.
		> $0.1*2$ for unit and exponent.	
	(i) 0.6	Expression for $I_{\rm m}$ (in terms of α , ω , θ_0 , V_0 and C).	
		> 0.1 for condition of maximum current $dI/dt = 0$.	
		> 0.3 for obtaining the instant $t_{\rm m}$ of maximum current.	→(i-1)
		> 0.2 for expression of $I_{\rm m}$.	→(i-2)
	0.4	Maximum value V_{0h} for which I_m will not exceed I_h of P	roblem (d).
		> 0.3 for significant figure (or mantissa) with first 2 dig	gits correct. \rightarrow (i-5)
		> 0.1 for unit and exponent.	· · · · · · · · · · · · · · · · · · ·
1	1	±	

Theoretical Competition

25 April 2010 (Document Released: 14:30, 4/24)

(j)	The total amount of heat ΔE dissipated in the coil.
1.0	▶ 0.3 for energy E_c supplied by the capacitor up to the time $t_m \rightarrow (j-2)$
	► 0.2 for equality between E_C and the amount of heat ΔE . \rightarrow (j-2)
	\triangleright 0.3 for expression of total amount of heat Δ <i>E</i> . →(j-3)
0.4	▶ 0.1 for significant figure (or mantissa) with first 2 digits correct. \rightarrow (j-3)
	➢ 0.1 for unit and exponent.
	The temperature increase ΔT of the coil.
	\succ 0.1 for expression of Δ <i>T</i> . →(j-4)
	▶ 0.2 for significant figure (or mantissa) with first 2 digits correct. \rightarrow (j-4)
	➢ 0.1 for unit and exponent.

⁺The equation number(s) at the end of a line refers to equation(s) in the SOLUTION sheets.