

Theoretical Question 3: Electron and Gas Bubbles in Liquids

MARKING SCHEME

Total	Mark(s)	Marking Scheme for Answers		
Part A	(a) 0.4	Relation between P_{He} , P_{e} , and σ .		
4.0		➤ 0.1 for force on interface from surface tension.	→(a-1)†	
		➢ 0.1 for force on interface from pressure.	→(a-1)	
		➢ 0.1 for condition of static equilibrium.	→(a-1)	
		\succ 0.1 for $P_{\rm e} = P_{\rm He} + 2\sigma/R$	→(a-2)	
	1.0	Relation between E_k and P_e .		
		▶ 0.1 for $P \propto 1/R$		
		> 0.2 for $E_{\rm k} \propto 1/R^2$	→(a-3)	
		▶ 0.2 for $dE_{\rm k}/dR \propto -2E_{\rm k}/R$	→(a-4)	
		> 0.2 for work-energy relation $dE_{\rm k} = dW$	→(a-4)	
		▶ 0.1 for work supplied to bubble $dW = -P_e dV$	→(a-5)	
		> 0.2 for $P_{\rm e} = E_{\rm k}/2\pi R^3$	→(a-6)	
	(b)	The smallest possible kinetic energy E_0 as a function of R .		
	0.8	> 0.2 for uncertainties = mean-squared values	→(b-2)(b-3)	
		> 0.1 for $(\Delta x)^2 = (\Delta y)^2 = (\Delta z)^2$	→(b-4)(b-5)	
		> 0.1 for $3(\Delta x)^2 = \overline{r^2}$	→(b-4)(b-5)	
		▶ 0.2 for $\overline{r^2} \overline{p^2} \ge 9\hbar^2/4$	→(b-6)	
		> 0.2 for $E_0 = 9\hbar^2/8mR^2$	→(b-8)	
	(c) 0.6	The bubble's equilibrium radius $R_{\rm e}$ when $E_{\rm k} = E_0$ and $P_{\rm He} = 0$.		
		▶ 0.2 for establishing a valid equation for $R_{\rm e}$.	→(c-1)	
		→ 0.2 for $R_{\rm e} = (9\hbar^2/32\pi m\sigma)^{1/4}$	→(c-2)	
		➢ 0.1 for significant figure (or mantissa) with first 2 digits	correct.	
		➢ 0.1 for unit and exponent		
	(d) 0.6	Condition satisfied by R and P_{He} for stable equilibrium at	R.	
		0.2 for indicating stable equilibrium requires restoring for	orce. \rightarrow (d-1)	
		▶ 0.4 for $P_{\rm He} > -8\sigma/(5R)$	→(d-4)	
	(e) 0.6	The threshold pressure $P_{\rm th}$ for no possibility of equilibrium		
		> 0.2 for an inequality relating P_{He} and R .	→(e-1)	
		▶ 0.4 for expression of P_{th} .	→(e-5)	

Theoretical Competition

25 April 2010 (Document Released: 14:30, 4/24)

Page 2 of 3

Part B	(f) 0.4	Amount of work dW done on the liquid from R to $R + dR$.	
		> 0.1 for work on a sphere is $dW = FdR = PdV$	→(f-1)
		> 0.1 for change of liquid volume is zero.	→(f-1)
		> 0.2 for expression of dW	→(f-1)
	0.4	Values of m and n.	
		> 0.2 for $m = 3$	→(f-4)
		> 0.2 for $n = 2$	→(f-4)
	(g) 0.4	Pressure $P \equiv P(R)$ as a function of <i>R</i> .	
		> 0.2 for obtaining initial pressure P_i	→(g-1)
		\succ 0.1 for PV^{γ} = constant	→(g-2)
		> 0.1 for expression of $P(R)$	→(g-2)
	0.2	Temperature $T \equiv T(R)$ as a function of <i>R</i> .	
		> 0.1 for $TV^{\gamma-1} = \text{constant}$	→(g-3)
		> 0.1 for expression of $T(R)$	→(g-3)
	(h)	The coefficient μ in terms of R_i and P_0 .	
	0.6	> 0.2 for an integrable equation for $\dot{\beta}^2$	→(h-2)
		> 0.2 for carrying out integration leading to $U(\beta)$	→(h-3)
		> 0.2 for $\mu = P_0/(3R_i^2)$	→(h-5)
	(i) 0.4	Values of the constant $C_{\rm m}$.	
		\succ 0.4 for $C_{\rm m} = 1$	→(i-2)
	0.3	The minimum radius $R_{\rm m}$ for $R_{\rm i} = 7R_0$.	
		> 0.2 for significant figure (or mantissa) with first 2 digits co	orrect. (i-5)
		> 0.1 for unit and exponent	
	0.3	The temperature $T_{\rm m}$ of the gas at the minimum radius $\beta = \beta_{\rm m}$	ı.
		> 0.2 for significant figure (or mantissa) with first 2 digits co	orrect. (i-6)
		> 0.1 for unit and exponent	
	(j)	The radius β_u at which $u \equiv \dot{\beta} $ reaches its maximum value	•
	0.6	> 0.1 for an equation satisfied by β_u	→(j-2)
		> 0.2 for obtaining β_u as a function of Q	→(j-4)
		> 0.2 for significant figure (or mantissa) with first 2 digits co	orrect. (j-4)
		\succ 0.1 for unit and exponent	
	0.4	The value \bar{u} of radial speed u at $\beta = \bar{\beta} \equiv (\beta_m + \beta_u)/2$.	
		> 0.1 for value of $\beta = \overline{\beta} \equiv (\beta_m + \beta_u)/2$	
		> 0.2 for significant figure (or mantissa) with first 2 digits co	orrect. (j-6)
		\triangleright 0.1 for unit and exponent	

Theoretical Competition

Page 3 of 3

25 April 2010 (Document Released: 14:30, 4/24)

0.6	The time duration Δt_m for β to diminish from β_u to β_m .			
	\succ 0.1 for a formula to compute Δt_m	→(j-7)		
	> 0.1 for choosing a reasonable radial speed such as \bar{u} in $\Delta t_m =$			
	$(\beta_u - \beta_m)/\bar{u}$	→(j-7)		
	\triangleright 0.1 for the value of a reasonable radial speed.	→(j-6)		
	➢ 0.2 for significant figure (or mantissa) with first 2 digits correct. (j-7)			
	\geq 0.1 for unit and exponent			
(k)	The power \dot{E} supplied to the bubble at β .			
0.6	▶ 0.2 for a formula of \dot{E} in terms of derivatives \dot{V} or \dot{T} .	→(k-2)		
	> 0.2 for expressing \dot{V} or \dot{T} in terms of $\dot{\beta}$ and β .	→(k-2)		
	\triangleright 0.2 for $\dot{E} = -4\pi R_i^3 P_i \dot{\beta} / \beta^3$	→(k-2)		
0.8	The upper bound of the emissivity <i>a</i> .			
	\triangleright 0.2 for radiant power in terms of temperature	→(k-1)		
	> 0.2 for radiant power in terms of β	→(k-1)		
	> 0.2 for an upper bound of a	→(k-3)		
	▶ 0.2 for value of $a < 0.0107$	→(k-4)		
-				

⁺The equation number(s) at the end of a line refers to equation(s) in the SOLUTION sheets.