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Question 1  
 
The fractional quantum Hall effect (FQHE) was discovered by D. C. Tsui and H. 
Stormer at Bell Labs in 1981.  In the experiment electrons were confined in two 
dimensions on the GaAs side by the interface potential of a GaAs/AlGaAs 
heterojunction fabricated by A. C. Gossard (here we neglect the thickness of the 
two-dimensional electron layer).  A strong uniform magnetic field 𝐵𝐵 was applied 
perpendicular to the two-dimensional electron system. As illustrated in Figure 1, when 
a current 𝐼𝐼 was passing through the sample, the voltage 𝑉𝑉H  across the current path 
exhibited an unexpected quantized plateau (corresponding to a Hall resistance 𝑅𝑅H =
3ℎ/𝑒𝑒2) at sufficiently low temperatures. The appearance of the plateau would imply 
the presence of fractionally charged quasiparticles in the system, which we analyze 
below. For simplicity, we neglect the scattering of the electrons by random potential, 
as well as the electron spin. 

 
(a) In a classical model, two-dimensional electrons behave like charged billiard balls 

on a table. In the GaAs/AlGaAs sample, however, the mass of the electrons is 
reduced to an effective mass 𝑚𝑚∗ due to their interaction with ions. 
(i) (2 point) Write down the equation of motion of an electron in perpendicular 

electric field 𝐸𝐸�⃗ = −𝐸𝐸𝑦𝑦𝑦𝑦� and magnetic field 𝐵𝐵�⃗ = 𝐵𝐵�̂�𝑧. 

(ii) (1 point) Determine the velocity 𝑣𝑣s  of the electrons in the stationary case. 
(iii) (1 point) Which direction is the velocity pointing at? 

 
(b) (2 points) The Hall resistance is defined as 𝑅𝑅H = 𝑉𝑉H/𝐼𝐼. In the classical model, 

find 𝑅𝑅H  as a function of the number of the electrons 𝑁𝑁 and the magnetic flux 
𝜙𝜙 = 𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵 , where 𝐵𝐵  is the area of the sample, and 𝐵𝐵  and 𝐵𝐵  the 
effective width and length of the sample, respectively. 

 
(c) (2 points) We know that electrons move in circular orbits in the magnetic field. In 

the quantum mechanical picture, the impinging magnetic field 𝐵𝐵  could be 
viewed as creating tiny whirlpools, so-called vortices, in the sea of 
electrons—one whirlpool for each flux quantum ℎ/𝑒𝑒 of the magnetic field, 
where ℎ is the Planck's constant and 𝑒𝑒 the elementary charge of an electron. 
For the case of 𝑅𝑅H = 3ℎ/𝑒𝑒2, which was discovered by Tsui and Stormer, derive 

the ratio of the number of the electrons 𝑁𝑁 to the number of the flux quanta 𝑁𝑁𝜙𝜙 , 
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known as the filling factor ν. 
 

 
 
Figure 1: (a) Sketch of the experimental setup for the observation of the FQHE. As indicated, a 
current 𝐼𝐼 is passing through a two-dimensional electron system in the longitudinal direction with 
an effective length 𝐵𝐵. The Hall voltage 𝑉𝑉H  is measured in the transverse direction with an effective 
width 𝐵𝐵. In addition, a uniform magnetic field 𝐵𝐵 is applied perpendicular to the plane. The 
direction of the current is given for illustrative purpose only, which may not be correct. (b) Hall 
resistance 𝑅𝑅H  versus 𝐵𝐵 at four different temperatures (curves shifted for clarity) in the original 
publication on the FQHE. The features at 𝑅𝑅H = 3ℎ/𝑒𝑒2 are due to the FQHE. 

 
 
(d) (2 points) It turns out that binding an integer number of vortices (𝑛𝑛 > 1) with 

each electron generates a bigger surrounding whirlpool, hence pushes away all 
other electrons. Therefore, the system can considerably reduce its electrostatic 
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Coulomb energy at the corresponding filling factor. Determine the scaling 
exponent 𝛼𝛼 of the amount of energy gain for each electron Δ𝑈𝑈(𝐵𝐵) ∝ 𝐵𝐵α . 

 
(e) (2 points) As the magnetic field deviates from the exact filling ν = 1/𝑛𝑛 to a 

higher field, more vortices (whirlpools in the electron sea) are being created. 
They are not bound to electrons and behave like particles carrying effectively 
positive charges, hence known as quasiholes, compared to the negatively charged 
electrons. The amount of charge deficit in any of these quasiholes amounts to 
exactly 1/𝑛𝑛 of an electronic charge. An analogous argument can be made for 
magnetic fields slightly below ν and the creation of quasielectrons of negative 
charge 𝑒𝑒∗ = −𝑒𝑒/𝑛𝑛. At the quantized Hall plateau of 𝑅𝑅H = 3ℎ/𝑒𝑒2, calculate the 
amount of change in 𝐵𝐵 that corresponds to the introduction of exactly one 
fractionally charged quasihole. (When their density is low, the quasiparticles are 
confined by the random potential generated by impurities and imperfections, 
hence the Hall resistance remains quantized for a finite range of 𝐵𝐵.) 

 
(f) In Tsui et al. experiment, 

the magnetic field corresponding to the center of the quantized Hall plateau 

𝑅𝑅H = 3ℎ/𝑒𝑒2, 𝐵𝐵1/3 = 15 Tesla, 

the effective mass of an electron in GaAs, 𝑚𝑚∗ = 0.067 𝑚𝑚𝑒𝑒 , 
the electron mass, 𝑚𝑚𝑒𝑒 = 9.1 × 10−31 kg, 
Coulomb's constant, 𝑘𝑘 = 9.0 × 109 N ∙ m2/C2, 
the vacuum permittivity, ε0 = 1/4π𝑘𝑘 = 8.854 × 10−12 F/m, 
the relative permittivity (the ratio of the permittivity of a substance to the vacuum 

permittivity) of GaAs, ε𝑟𝑟 = 13, 
the elementary charge, 𝑒𝑒 = 1.6 × 10−19 C, 
Planck's constant, ℎ = 6.626 × 10−34 J ∙ s, and 
Boltzmann's constant, 𝑘𝑘B = 1.38 × 10−23 J/K. 
In our analysis, we have neglected several factors, whose corresponding energy                         
scales, compared to Δ𝑈𝑈(𝐵𝐵) discussed in (d), are either too large to excite or too 
small to be relevant. 
(i) (1 point) Calculate the thermal energy 𝐸𝐸th  at temperature 𝑇𝑇 = 1.0 K. 
(ii) (2 point) The electrons spatially confined in the whirlpools (or vortices) have 

a large kinetic energy. Using the uncertainty relation, estimate the order of 
magnitude of the kinetic energy. (This amount would also be the additional 
energy penalty if we put two electrons in the same whirlpool, instead of in 
two separate whirlpools, due to Pauli exclusion principle.)  

 
(g) There are also a series of plateaus at 𝑅𝑅H = ℎ/𝑖𝑖𝑒𝑒2, where 𝑖𝑖 = 1, 2, 3, … in Tsui et 

al. experiment, as shown in Figure 1(b). These plateaus, known as the integer 
quantum Hall effect (IQHE), were reported previously by K. von Klitzing in 1980. 
Repeating (c)-(f) for the integer plateaus, one realizes that the novelty of the 
FQHE lies critically in the existence of fractionally charged quasiparticles. R. 
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de-Picciotto et al. and L. Saminadayar et al. independently reported the 
observation of fractional charges at the ν = 1/3  filling in 1997. In the 
experiments, they measured the noise in the charge current across a narrow 
constriction, the so-called quantum point contact (QPC). In a simple statistical 
model, carriers with discrete charge 𝑒𝑒∗ tunnel across the QPC and generate 
charge current IB (on top of a trivial background). The number of the carriers 𝑛𝑛τ  
arriving at the electrode during a sufficiently small time interval τ obeys Poisson 
probability distribution with parameter λ 

 

P(𝑛𝑛τ = 𝑘𝑘) =
λ𝑘𝑘e−λ

𝑘𝑘!
 

 
where 𝑘𝑘! is the factorial of 𝑘𝑘. You may need the following summation 

eλ = �
λ𝑘𝑘

𝑘𝑘!

∞

k=0

 

 
(i) (2 point) Determine the charge current 𝐼𝐼B , which measures total charge per 

unit of time, in terms of λ and τ. 
(ii) (2 points) Current noise is defined as the charge fluctuations per unit of time. 

One can analyze the noise by measuring the mean square deviation of the 
number of current-carrying charges. Determine the current noise 𝑆𝑆𝐼𝐼 due to 
the discreteness of the current-carrying charges in terms of λ and τ. 

(iii) (1 point) Calculate the noise-to-current ratio 𝑆𝑆𝐼𝐼/𝐼𝐼B , which was verified by R. 
de-Picciotto et al. and L. Saminadayar et al. in 1997. (One year later, Tsui 
and Stormer shared the Nobel Prize in Physics with R. B. Laughlin, who 
proposed an elegant ansatz for the ground state wave function at ν = 1/3.) 

  


