
Question 1

The fractional quantum Hall effect (FQHE) was discovered byD. C. Tsui and
H. Stormer at Bell Labs in 1981. In the experiment electrons were confined in
two dimensions on the GaAs side by the interface potential ofa GaAs/AlGaAs
heterojunction fabricated by A. C. Gossard (here we neglectthe thickness of the
two-dimensional electron layer). A strong uniform magnetic fieldB was applied
perpendicular to the two-dimensional electron system. As illustrated in Figure
1, when a currentI was passing through the sample, the voltageVH across the
current path exhibited an unexpected quantized plateau (corresponding to a Hall
resistanceRH = 3h/e2) at sufficiently low temperatures. The appearance of the
plateau would imply the presence of fractionally charged quasiparticles in the
system, which we analyze below. For simplicity, we neglect the scattering of the
electrons by random potential, as well as the electron spin.

(a) In a classical model, two-dimensional electrons behavelike charged billiard
balls on a table. In the GaAs/AlGaAs sample, however, the mass of the
electrons is reduced to an effectivem∗ due to their interaction with ions.

(i) (2 point) Write down the equation of motion of an electron in perpen-
dicular electric field~E = −Ey ŷ and magnetic field~B = Bẑ.

Solution: An electron with charge−e (e > 0) experiences the Lorentz force
due to the perpendicular magnetic field and the electric force

m∗
d~v

dt
= −e

(

~v × ~B + ~E
)

where~v is the velocity of the electron.

Grading: 1 point for writing down the electric force and the magnetic force
correct, and 1 point for writing down the effective mass and the acceleration
correct.

(ii) (1 point) Determine the velocityvs of the electrons in the stationary
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case.

Solution: In the stationary regime, the acceleration vanishes. Hence

~vs × ~B + ~E = 0

The velocity can be expressed as

~vs =
~E × ~B

B2

whose magnitude is simplyvs = E/B.

Grading: Either writing down the correct magnitude of the velocity orits
vector form is sufficient for the 1 point.

(iii) ( 1 point) Which direction is the velocity pointing at?

Solution: The velocity~vs should be perpendicular to both the magnetic field
and the electric field. If~B is in thez direction and~E in the−y direction, as
given by the problem,~vs is in the−x direction, generating a charge current
in thex direction.

Grading: 1 point for the correct direction.

(b) (2 points) The Hall resistance is defined asRH = VH/I. In the classical
model, findRH as a function of the number of the electronsN and the
magnetic fluxφ = BA = BWL, whereA is the area of the sample, andW
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andL the effective width and length of the sample, respectively.

Solution: The Hall voltageVH = EyW . The current in the−x direction is

I =
∆Q

∆t
=

Ne

L/vs
=

Ne

L

Ey

B
= e

N

φ
VH

Therefore,

RH =
VH

I
=

1

e

φ

N

Grading: 1 point for the final expression and 1 point for writing down the
expression for relatingI with the number of electrons and their stationary
velocity (hence the electric field and the magnetic field).

(c) (2 points) We know that electrons move in circular orbitss in the magnetic
field. In the quantum mechanical picture, the impinging magnetic fieldB
could be viewed as creating tiny whirlpools, so-called vortices, in the sea of
electrons–one whirlpool for each flux quantumh/e of the magnetic field,
whereh is the Planck’s constant ande the elementary charge of an electron.
For the case ofRH = 3h/e2, which was discovered by Tsui and Stormer,
derive the ratio of the number of the electronsN to the number of the flux
quantaNφ, known as the filling factorν.

Solution: The Hall resistance can be rewritten as

RH =
1

e

φ

N
=

h

e2
φ/(h/e)

N
=

h

e2
Nφ

N

At the plateau,ν = N/Nφ = 1/3.

Grading: 1 point for the final expression.

(d) (2 points) It turns out that binding an integer number of vortices (n > 1)
with each electron generates a bigger surrounding whirlpool, hence pushes
away all other electrons. Therefore, the system can considerably reduce
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its electrostatic Coulomb energy at the corresponding filling factor. Deter-
mine the scaling exponentα of the amount of energy gain for each electron
∆U(B) ∝ Bα.

Solution: The average distance between electrons can be written asfl0,
where

l0 =

√

LW

N
=

√

φ

NB
=

√

h

νeB

andf is a dimensionless constant that is determined by the electron distri-
bution (or, quantum mechanically, wave function). Bindingmultiple vortices
with an electron effectively reduces the probability of other electrons getting
close. Therefore, the electrons optimize their distribution in such a way that
their average distance increases fromf1l0 to f2l0 (f1 < f2). One expect the
Coulomb energy gain per electron is proportional to

e2

4πε0εr(f1l0)
− e2

4πε0εr(f2l0)
=

(

1

f1
− 1

f2

)

e2

4πε0εrl0

Therefore,∆(B) ∝ 1/l0 ∝
√
B, orα = 1/2.

Grading: The key point here is to realize that the energy scale is determined
by the Coulomb interaction, which scales inversely with a length scale (e.g.,
the magnetic length) that characterizes the mean electron distance (and its
change). 1 point for the final expression and 1 point for writing down the
correct relation between the length scale and the magnetic field.

(e) (2 points) As the magnetic field deviates from the exact fillingν = 1/m
to a higher field, more vortices (whirlpools in the electron sea) are being
created. They are not bound to electrons and behave like particles carry-
ing effectively positive charges, hence known as quasiholes, compared to
the negatively charged electrons. The amount of charge deficit in any of
these quasiholes amounts to exactly1/m of an electronic charge. An anal-
ogous argument can be made for magnetic fields slightly belowν and the
creation of quasielectrons of negative chargee∗ = −e/m. Assume the sam-
ple has an areaA. At the quantized Hall plateau ofRH = 3h/e2, calculate
the amount of change inB that corresponds to the introduction of exactly
one fractionally charged quasihole. (When their density islow, the quasi-
particles are confined by the random potential generated by impurities and
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imperfections, hence the Hall resistance remains quantized for a finite range
of B.)

Solution: The flux change due to the change of the magnetic field is

∆φ = ∆B(WL) =
h

e

Therefore,∆B = h/(eWL).

Grading: 2 points for the final expression.

(f) In Tsui et al. experiment,

• the magnetic field corresponding to the center of the quantized Hall
plateauRH = 3h/e2, B1/3 = 15 Tesla,

• the effective mass of an electron in GaAs,m∗ = 0.067me,

• the electron mass,me = 9.1× 10−31 kg,

• Coulomb’s constant,k = 9.0× 109 N·m2/C2,

• the vacuum permittivity,ε0 = 1/(4πk) = 8.854× 10−12 F/m,

• the relative permittivity (the ratio of the permittivity ofa substance to
the vacuum permittivity) of GaAs,εr = 13,

• the elementary charge,e = 1.6× 10−19 C,

• Planck’s constant,h = 6.626× 10−34 J·s, and

• Boltzmann’s constant,kB = 1.38× 10−23 J/K.

In our analysis, we have neglected several factors, whose corresponding
energy scales, compared to∆(B) discussed in (d), are either too large to
excite or too small to be relevant.

(i) (1 point) Calculate the thermal energyEth at temperatureT = 1.0 K.

Solution: The thermal energy

Eth = kBT = 1.38× 10−23 × 1.0 = 1.38× 10−23 J

Grading: 1 point for the numerical result.

5



(ii) (2 point) The electrons spatially confined in the whirlpools (or vor-
tices) have a large kinetic energy. Using the uncertainty relation, es-
timate the order of magnitude of the kinetic energy. (This amount
would also be the additional energy penalty if we put two electrons in
the same whirlpool, instead of in two separate whirlpools, due to Pauli
exclusion principle.)

Solution: The size of a vortex is of order

l0 =

√

h

eB
=

√

6.626× 10−34

1.6× 10−19 × 15
= 1.66× 10−8m

According to the uncertainty relation,p ∼ ∆p ∼ h/l0. Therefore, the kinetic
energy is

p2

2m∗
=

h2

2m∗

eB

h
=

h

2

eB

m∗

=
6.626× 10−34 × 1.6× 10−19 × 15

2× 0.067× 9.1× 10−31

= 1.3× 10−20 J

Grading: 1 point for the final numerical result and 1 point for relatingthe
characteristic length to the momentum through the uncertainty relation, and
hence the kinetic energy. Note this is an estimate problem, hence any final
numerical result within a factor of2π can be regarded as correct.

(g) There are also a series of plateau atRH = h/ie2, wherei = 1,2,3,... in
Tsui et al. experiment, as shown in Figure 1(b). These plateaus, known
as the integer quantum Hall effect (IQHE), were reported previously by K.
von Klitzing in 1980. Repeating (c)-(f) for the integer plateaus, one realizes
that the novelty of the FQHE lies critically in the existenceof fractionally
charged quasiparticles. R. de-Picciottoet al. and L. Saminadayaret al. in-
dependently reported the observation of fractional charges at theν = 1/3
filling in 1997. In the experiments, they measured the noise in the charge
current across a narrow constriction, the so-called quantum point contact
(QPC). In a simple statistical model, carriers with discrete chargee∗ tunnel
across the QPC and generate charge currentIB (on top of a trivial back-
ground). The number of the carriersnτ arriving at the electrode during
a sufficiently small time intervalτ obeys Poisson probability distribution
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with parameterλ

P (nτ = k) =
λke−λ

k!
, (1)

wherek! is the factorial ofk. You may need the following summation

eλ =
∞
∑

k=0

λk

k!
, (2)

(i) (2 point) Determine the charge currentIB, which measures total charge
per unit of time, in terms ofλ andτ .

Solution: The current can be calculated by the ratio of the total chargecarried
by the averagednτ quasiparticles to the time intervalτ .

〈nτ 〉 =
∞
∑

k=1

kP (k) =
∞
∑

k=1

λke−λ

(k − 1)!

= λ
∞
∑

k=0

P (k)

= λ

where we have used
∑

k P (k) = 1. Therefore,

IB =
〈nτ 〉e∗

τ
=

νeλ

τ

Grading: 1 point for correctly calculating the average charge under the Pois-
son distribution and 1 point for the final expression for the charge current.

(ii) (2 points) Current noise is defined as the charge fluctuations per unit
of time. One can analyze the noise by measuring the mean square
deviation of the number of current-carrying charges. Determine the
current noiseSI due to the discreteness of the current-carrying charges
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in terms ofλ andτ .

Solution: Similarly, the noise can be related to the averaged charge fluctua-
tions during the time intervalτ .

〈

(nτ − 〈nτ )
2
〉

= 〈n2

τ 〉 − 〈nτ 〉2

=
∞
∑

k=1

k2P (k)− λ2

=

[

λ2

∞
∑

k=0

P (k) +
∞
∑

k=1

kP (k)

]

− λ2

= λ

Therefore,

SI =

〈

(nτ − 〈nτ )
2
〉

(e∗)2

τ
=

(νe)2λ

τ

Grading: 1 point for correctly calculating the charge fluctuations under the
Poisson distribution and 1 point for the final expression that relates the current
noise to the charge fluctuations.

(iii) ( 1 point) Calculate the noise-to-current ratioSI/IB, which was veri-
fied by R. de-Picciottoet al. and L. Saminadayaret al. in 1997. (One
year later, Tsui and Stormer shared the Nobel Prize in Physics with
R. B. Laughlin, who proposed an elegant ansatz for the groundstate
wave function atν = 1/3.)

Solution: The noise-to-current ratioSI/IB = e∗ = νe.

Grading: 1 point for the final expression.
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Figure 1: (a) Sketch of the experimental setup for the observation of the FQHE.
As indicated, a currentI is passing through a two-dimensional system in the lon-
gitudinal direction with an effective lengthL. The Hall voltageVH is measured in
the transverse direction with an effective widthW . In addition, a uniform mag-
netic fieldB is applied perpendicular to the plane. The direction of the current is
given for illustrative purpose only, which may not be correct. (b) Hall resistance
RH versusB at four different temperatures (curves shifted for clarity), adapted
from the original publication on the FQHE. The features atRH = 3h/e2 are due
to the FQHE.
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