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Question 1

The fractional quantum Hall effect (FQHE) was discoveredihyC. Tsui and
H. Stormer at Bell Labs in 1981. In the experiment electroesenconfined in
two dimensions on the GaAs side by the interface potentia GAs/AlGaAs
heterojunction fabricated by A. C. Gossard (here we nedihecthickness of the
two-dimensional electron layer). A strong uniform magoétld B was applied
perpendicular to the two-dimensional electron system. Iistrated in Figure
1, when a currenf was passing through the sample, the volt&geacross the
current path exhibited an unexpected quantized plateate@monding to a Hall
resistance;; = 3h/e?) at sufficiently low temperatures. The appearance of the
plateau would imply the presence of fractionally chargedsiparticles in the
system, which we analyze below. For simplicity, we neglietdcattering of the
electrons by random potential, as well as the electron spin.

(&) Inaclassical model, two-dimensional electrons belikgeharged billiard
balls on a table. In the GaAs/AlGaAs sample, however, thesnoéashe
electrons is reduced to an effectiveé due to their interaction with ions.

(i) (2 point) Write down the equation of motion of an electron in perpen-
dicular electric fielde = —E,y and magnetic fields = B2.

Solution: An electron with charge-e (¢ > 0) experiences the Lorentz forge
due to the perpendicular magnetic field and the electricforc
dv

m*az—e(ﬁx§+ﬁ)

wherev is the velocity of the electron.
Grading: 1 point for writing down the electric force and the magneticce

correct, and 1 point for writing down the effective mass ameldcceleration
correct.

(i) (1 point) Determine the velocity, of the electrons in the stationary



case.

Solution: In the stationary regime, the acceleration vanishes. Hence
@x§+5:0

The velocity can be expressed as

whose magnitude is simply, = £/B.

Grading: Either writing down the correct magnitude of the velocityitsr
vector form is sufficient for the 1 point.

(i) (1 point) Which direction is the velocity pointing at?

Solution: The velocitys, should be perpendicular to both the magnetic field
and the electric field. 13 is in thez direction andF in the —y direction, as

given by the problemy; is in the —z direction, generating a charge current
in the z direction.

Grading: 1 point for the correct direction.

(b) (2 points) The Hall resistance is defined &; = Vy/I. In the classical
model, find Ry as a function of the number of the electraNsand the
magnetic fluxp = BA = BW L, whereA is the area of the sample, ahid



and L the effective width and length of the sample, respectively.

Solution: The Hall voltagel’;; = E, V. The current in the-z direction is

AQ Ne NeE, N
= — = = — :e—VH
At L/v, L B ¢

Therefore,

Grading: 1 point for the final expression and 1 point for writing dowie t
expression for relatind with the number of electrons and their stationg
velocity (hence the electric field and the magnetic field).

(c) (2 points) We know that electrons move in circular orbitss in the maigne
field. In the quantum mechanical picture, the impinging nedigrfield B

could be viewed as creating tiny whirlpools, so-called ieed, in the sea of
electrons—one whirlpool for each flux quantuine of the magnetic field,
whereh is the Planck’s constant ardhe elementary charge of an electron.
For the case of:y; = 3h/e?, which was discovered by Tsui and Stormer,
derive the ratio of the number of the electraligo the number of the flux
quantaN,, known as the filling factor.

Solution: The Hall resistance can be rewritten as

_1o _nhofhje) RNy

R eN € N 2 N

At the plateauy = N/Ny = 1/3.

Grading: 1 point for the final expression.

(d) (2 points) It turns out that binding an integer number of vortices> 1)
with each electron generates a bigger surrounding whitjp@mce pushes
away all other electrons. Therefore, the system can coraitjereduce



its electrostatic Coulomb energy at the correspondingdifactor. Deter-
mine the scaling exponentof the amount of energy gain for each electron
AU(B) x B*.

Solution: The average distance between electrons can be writtefl,as

0 N NB veB

and f is a dimensionless constant that is determined by the etedlistri-
bution (or, quantum mechanically, wave function). Bindimgltiple vortices
with an electron effectively reduces the probability ofatlelectrons getting
close. Therefore, the electrons optimize their distridouin such a way that
their average distance increases frémh to foly (fi < f2). One expect the
Coulomb energy gain per electron is proportional to

¢ & _ (i _ i) L
dmeoe,(filo)  4Ameoe,(falo) i fa) Ameogly
Therefore A(B) « 1/ly < v B, ora = 1/2.

Grading: The key point here is to realize that the energy scale is iahted
by the Coulomb interaction, which scales inversely withregté scale (e.g.)
the magnetic length) that characterizes the mean elecistande (and its
change). 1 point for the final expression and 1 point for wgtdown the
correct relation between the length scale and the magnetik fi

(e) @ points) As the magnetic field deviates from the exact filling= 1/m
to a higher field, more vortices (whirlpools in the electr@a)ysare being
created. They are not bound to electrons and behave likelpartarry-
ing effectively positive charges, hence known as quasghaempared to
the negatively charged electrons. The amount of chargeitdefiany of
these quasiholes amounts to exadtlyn of an electronic charge. An anal-
ogous argument can be made for magnetic fields slightly beland the
creation of quasielectrons of negative chartge- —e/m. Assume the sam-
ple has an ared. At the quantized Hall plateau dt;; = 3h/¢?, calculate
the amount of change iR that corresponds to the introduction of exactly
one fractionally charged quasihole. (When their densitpug the quasi-
particles are confined by the random potential generatechpyrities and



imperfections, hence the Hall resistance remains quahtizea finite range
of B.)

Solution: The flux change due to the change of the magnetic field is
h
Ap=AB(WL)=—
e
Therefore AB = h/(eWL).

Grading: 2 points for the final expression.

() In Tsui et al. experiment,

e the magnetic field corresponding to the center of the quaatizall
plateauR; = 3h/e?, By3 = 15 Tesla,

e the effective mass of an electron in GaAs, = 0.067m..,

e the electron massy, = 9.1 x 103! kg,

e Coulomb’s constan = 9.0 x 10° N-m?/C?,

e the vacuum permittivitys, = 1/(4wk) = 8.854 x 10~'2 F/m,

¢ the relative permittivity (the ratio of the permittivity af substance to
the vacuum permittivity) of GaAs;,. = 13,

e the elementary charge= 1.6 x 107 C,
e Planck’s constant; = 6.626 x 1073* J.s, and
e Boltzmann’s constant;z = 1.38 x 10723 J/K.

In our analysis, we have neglected several factors, whosesponding
energy scales, compared A9 B) discussed in (d), are either too large to
excite or too small to be relevant.

() (1 point) Calculate the thermal enerdy,;, at temperaturé@” = 1.0 K.

Solution: The thermal energy
By, =kpT =138 x 107 x 1.0 =138 x 107% ]

Grading: 1 point for the numerical result.




(i) (2 point) The electrons spatially confined in the whirlpools (or vor-
tices) have a large kinetic energy. Using the uncertaingtios, es-
timate the order of magnitude of the kinetic energy. (Thisoant
would also be the additional energy penalty if we put two tetets in
the same whirlpool, instead of in two separate whirlpoals th Pauli
exclusion principle.)

Solution: The size of a vortex is of order

I 6.626 x 10~
lo=1— = =1.66 x 107°
"=\ eB \/1.6 X 10-19 x 15 o em

According to the uncertainty relatiop,~ Ap ~ h/l,. Therefore, the kinetic
energy is

p? h? eB  heB
2m* om* b 2m*
6.626 x 1073* x 1.6 x 107 x 15
2 x 0.067 x 9.1 x 1031
= 13x107%]J

Grading: 1 point for the final numerical result and 1 point for relatittg
characteristic length to the momentum through the uncegtaelation, and
hence the kinetic energy. Note this is an estimate problencd any fina
numerical result within a factor &fr can be regarded as correct.

(g) There are also a series of plateauat = h/ie?, wherei = 1,2,3,... in
Tsui et al. experiment, as shown in Figure 1(b). These plateaus, known
as the integer quantum Hall effect (IQHE), were reportediptesly by K.
von Klitzing in 1980. Repeating (c)-(f) for the integer @ats, one realizes
that the novelty of the FQHE lies critically in the existerafdractionally
charged quasiparticles. R. de-Picciait@l. and L. Saminadayast al. in-
dependently reported the observation of fractional cleasie¢her = 1/3
filling in 1997. In the experiments, they measured the naisthé charge
current across a narrow constriction, the so-called qumargaint contact
(QPC). In a simple statistical model, carriers with disergtarge=* tunnel
across the QPC and generate charge curfgr(bn top of a trivial back-
ground). The number of the carriers arriving at the electrode during
a sufficiently small time intervat obeys Poisson probability distribution



with parameten
Are=A

wherek! is the factorial oft. You may need the following summation

P(n, =k) =

00)\19

€>\ = ZF, (2)

k=0

() (2point) Determine the charge currehs, which measures total charge
per unit of time, in terms ok andr.

Solution: The current can be calculated by the ratio of the total cheageed
by the averaged.. quasiparticles to the time interval

[e'S) 00 )\kef)\
ny) = kP(k) = —_—
(ns) ];1 (k) ,;(k—l)!

= /\iP(k)
_ /\k:O

where we have used, P(k) = 1. Therefore,

veA

Grading: 1 point for correctly calculating the average charge unlkeRois-
son distribution and 1 point for the final expression for tharge current.

(ii) (2 points) Current noise is defined as the charge fluctuations per unit
of time. One can analyze the noise by measuring the meanesquar
deviation of the number of current-carrying charges. Deiee the
current noise5; due to the discreteness of the current-carrying charges



in terms of\ andr.

Solution: Similarly, the noise can be related to the averaged chargtifiu
tions during the time intervai.

((n- = (n.)") = (n2) - (n,)?

= Y KP(k) -\

k=1
- [/\2 i P(k) + i k:P(k)] —\?
_ =0 k=1

Therefore,

5 ((nr = (1:)°) (€)* _ (we)?A

T T
Grading: 1 point for correctly calculating the charge fluctuationslenthe
Poisson distribution and 1 point for the final expressiomthiates the current
noise to the charge fluctuations.

(iii) (1 point) Calculate the noise-to-current rattp/ Iz, which was veri-
fied by R. de-Picciott@t al. and L. Saminadayaat al. in 1997. (One
year later, Tsui and Stormer shared the Nobel Prize in Péysiih
R. B. Laughlin, who proposed an elegant ansatz for the grcteie
wave function ai = 1/3.)

Solution: The noise-to-current rati§; / Iz = e* = ve.

Grading: 1 point for the final expression.
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Figure 1: (a) Sketch of the experimental setup for the olagenv of the FQHE.

As indicated, a current is passing through a two-dimensional system in the lon-
gitudinal direction with an effective length. The Hall voltagé/; is measured in
the transverse direction with an effective width. In addition, a uniform mag-
netic field B is applied perpendicular to the plane. The direction of teent is
given for illustrative purpose only, which may not be cotrgb) Hall resistance
Ry versusB at four different temperatures (curves shifted for clgrigdapted
from the original publication on the FQHE. The featuregat = 3/ /¢e* are due

to the FQHE.



