SOLUTION OF EXPERIMENT PROBLEM 2

1. The optical components are [total $1.5 \mathbf{p t s}]$:

no. 1	Diffraction grating	$[0.5 \mathrm{pts}]$
no. 2	Diffraction grating	$[0.5 \mathrm{pts}]$
no. 3	Plan-parallel plate	$[0.5 \mathrm{pts}]$

2. Cross section of the box [total $1.5 \mathbf{p t s}]$:

3. Additional information [total 1.0 pts$]$:

Distance of the grating (no.1) to the left wall is practically zero [0.2 pts]

Lines of grating no. 1 is at right angle to the slit
[0.3 pts]

Distance of the grating (no.2) to the right wall is practically zero [0.2 pts]

Lines of grating no. 2
is parallel to the slit
[0.3 pts]
4. Diffraction grating [total 2.0 pts :

Path length difference:

$$
\Delta=d \sin \theta, \quad d=\text { spacing of the grating }
$$

Diffraction order:

$$
\Delta=m \lambda, \quad m=\text { order number }
$$

Hence, for the first order $(m=1)$:

$$
\sin \theta=\lambda / d \quad[0.4 \mathrm{pts}]
$$

Observation data:
$\tan \theta \quad \theta \quad \sin \theta$
0.34
$18.78^{0} \quad 0.3219$
0.32
$17.74^{0} \quad 0.3048$ number of data ≥ 3
0.32
17.74^{0}
0.3048
[0.5 pts]

Name of component no.1	Specification
Diffraction grating	Spacing $=2.16 \mu \mathrm{~m}$ Lines at right angle to the slit

[0.4 pts]
[0.1 pts]

Note: true value of grating spacing is $2.0 \mu \mathrm{~m}$, deviation of the result $\leq 10 \%$
5. Diffraction grating [total 2.0 pts :

For the derivation of the formula, see nr. 4 above.

> [1.0 pts]

Observation data:

$\tan \theta$	θ	$\sin \theta$	
1.04	46.12^{0}	0.7208	
0.96	43.83^{0}	0.6925	number of data ≥ 3
1.08	47.20°	0.7330	$[0.5$ pts $]$

Name of component no.2	Specification
Diffraction grating	Spacing $=0.936 \mu \mathrm{~m}$ Lines parallel to the slit

[0.4 pts]
[0.1 pts]

Note: true value of grating spacing is $1.0 \mu \mathrm{~m}$, deviation of the result $\leq 10 \%$

Snell's law:

$$
\sin \varphi=n \sin \varphi^{\prime}, \quad \varphi^{\prime}=\angle \mathrm{BAC}
$$

Path length inside the plate:

$$
\mathrm{AC}=\mathrm{AB} / \cos \varphi^{\prime}, \quad \mathrm{AB}=h=\text { plate thickness }
$$

Beam displacement:

$$
\mathrm{CD}=t=\mathrm{AC} \sin \angle \mathrm{CAD}, \quad \angle \mathrm{CAD}=\varphi-\varphi^{\prime}
$$

Hence:

$$
t=h \sin \varphi\left[1-\cos \varphi /\left(n^{2}-\sin ^{2} \varphi\right)^{1 / 2}\right] \quad[0.6 p t s]
$$

Observation data:

φ	t	
0	0	(angle between beam and axis $\left.49^{\circ}\right)$
49^{0}	7.3 arbitrary scale	

Name of component no.3	Specification
Plane-parallel plate	Thickness $=17.9 \mathrm{~mm}$ Angle to the axis of the box 49°

Note: - true value of plate thickness is 20 mm

- true value of angle to the axis of the box is 52°
- deviation of the results $\leq 20 \%$.

