33rd
INTERNATIONAL
PHYSICS OLYMPIAD


## THEORETICAL COMPETITION

Tuesday, July $23^{\text {rd }}, 2002$

## Solution I: Ground-Penetrating Radar

1. Speed of radar signal in the material $v_{m}$ :

$$
\begin{align*}
& \omega t-\beta z=\text { constant } \rightarrow \beta \mathrm{z}=- \text { constant }+\omega \mathrm{t}(0.2 \mathrm{pts}) \\
& v_{m}=\frac{\omega}{\beta} \\
& v_{m}=\frac{1}{\left.\omega \frac{\mu \varepsilon}{2}\left[\left(1+\frac{\sigma^{2}}{\varepsilon^{2} \omega^{2}}\right)^{1 / 2}+1\right]\right\}^{1 / 2}} \quad(0.4 \mathrm{pts})  \tag{0.4pts}\\
& v_{m}=\frac{1}{\left\{\frac{\mu \varepsilon}{2}(1+1)\right\}^{1 / 2}}=\frac{1}{\sqrt{\mu \varepsilon}} \tag{0.4pts}
\end{align*}
$$

2. The maximum depth of detection (skin depth, $\boldsymbol{\delta}$ ) of an object in the ground is inversely proportional to the attenuation constant:

$$
\begin{aligned}
& \delta=\frac{1}{a}=\frac{(0.5 \text { pts })}{\omega\left\{\frac{\mu \varepsilon}{2}\left[\left(1+\frac{\sigma^{2}}{\varepsilon^{2} \omega^{2}}\right)^{1 / 2}-1\right]\right\}^{1 / 2}}=\frac{(0.3 \text { pts })}{\omega\left\{\frac{\mu \varepsilon}{2}\left[\left(1+\frac{1}{2} \frac{\sigma^{2}}{\varepsilon^{2} \omega^{2}}\right)-1\right]\right\}^{1 / 2}}=\frac{1}{\omega\left\{\frac{\mu \varepsilon}{2} \cdot \frac{1}{2} \frac{\sigma^{2}}{\varepsilon^{2} \omega^{2}}\right\}^{1 / 2}} \\
& \delta=\left(\frac{2}{\sigma}\right)\left(\frac{\varepsilon}{\mu}\right)^{1 / 2} .
\end{aligned}
$$

Numerically $\delta=\frac{\left(5.31 \sqrt{\varepsilon_{r}}\right)}{\sigma} \mathrm{m}$, where $\sigma$ is in $\mathrm{mS} / \mathrm{m}$. $\quad \mathbf{( 0 . 5 ~ p t s )}$
For a medium with conductivity of $1.0 \mathrm{mS} / \mathrm{m}$ and relative permittivity of 9 , the skin depth

$$
\delta=\frac{(5.31 \sqrt{9})}{1.0}=15.93 \mathrm{~m}
$$

3. Lateral resolution:

$$
\underbrace{d+\frac{\lambda}{4}}_{r-2} r=\left(\frac{\lambda d}{2}+\frac{\lambda^{2}}{16}\right)^{1 / 2}
$$

(1.0 pts)
$\mathrm{r}=0.5 \mathrm{~m}, \mathrm{~d}=4 \mathrm{~m}: \frac{1}{2}=\left(\frac{4 \lambda}{2}+\frac{\lambda^{2}}{16}\right)^{1 / 2}, \quad \lambda^{2}+32 \lambda-4=0$
The wavelength is $\lambda=0.125 \mathrm{~m}$.
The propagation speed of the signal in medium is

$$
\begin{align*}
& v_{m}=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{1}{\sqrt{\mu_{o} \mu_{r} \varepsilon_{o} \varepsilon_{r}}}=\frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}} \frac{1}{\sqrt{\mu_{r} \varepsilon_{r}}} \\
& v_{m}=\frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}}=\frac{0.3}{\sqrt{\varepsilon_{r}}} \mathrm{~m} / \mathrm{ns}, \text { where } c=\frac{1}{\sqrt{\mu_{o} \varepsilon_{o}}} \text { and } \mu_{\mathrm{r}}=1 \\
& v_{m}=0.1 \mathrm{~m} / \mathrm{ns}=10^{8} \mathrm{~m} / \mathrm{s} \tag{0.5pts}
\end{align*}
$$

The minimum frequency need to distinguish the two rods as two separate objects is

$$
\begin{gather*}
f_{\min }=\frac{v}{\lambda}  \tag{0.5pts}\\
f_{\min }=\frac{\frac{0.3}{\sqrt{9}}}{0.125} \times 10^{9} \mathrm{~Hz}=800 \mathrm{MHz} \tag{0.3pts}
\end{gather*}
$$

4. Path of EM waves for some positions on the ground surface


The traveltime as function of $x$ is

$$
\begin{align*}
& \left(\frac{t v}{2}\right)^{2}=d^{2}+x^{2},  \tag{1.0pts}\\
& t(x)=\sqrt{\frac{4 d^{2}+4 x^{2}}{v}}  \tag{1.0pts}\\
& t(x)=\frac{2 \sqrt{\varepsilon_{1 r}}}{0.3} \sqrt{d^{2}+x^{2}}
\end{align*}
$$



For $x=0$

$$
\begin{aligned}
& 100=2 \times(3 / 0.3) d \\
& d=5 \mathrm{~m}
\end{aligned}
$$

