Solution to Theoretical Question 1

A Swing with a Falling Weight

Part A

(a) Since the length of the string $L=s+R \theta$ is constant, its rate of change must be zero. Hence we have

$$
\begin{equation*}
\dot{s}+R \dot{\theta}=0 \tag{A1}
\end{equation*}
$$

(b) Relative to O, Q moves on a circle of radius R with angular velocity $\dot{\theta}$, so

$$
\begin{equation*}
\vec{v}_{Q}=R \dot{\theta} \hat{t}=-\dot{s} \hat{t} \tag{A2}
\end{equation*}
$$

(c) Refer to Fig. A1. Relative to Q, the displacement of P in a time interval Δt is $\Delta \vec{r}^{\prime}=(s \Delta \theta)(-\hat{r})+(\Delta s) \hat{t}=[(s \dot{\theta})(-\hat{r})+\dot{s} \hat{t}] \Delta t$. It follows

$$
\begin{equation*}
\bar{v}^{\prime}=-s \dot{\theta} \hat{r}+\dot{s} \hat{t} \tag{A3}
\end{equation*}
$$

Figure A1
(d) The velocity of the particle relative to O is the sum of the two relative velocities given in Eqs. (A2) and (A3) so that

$$
\begin{equation*}
\bar{v}=\bar{v}^{\prime}+\vec{v}_{Q}=(-s \dot{\theta} \hat{r}+\dot{s} \hat{t})+R \dot{\theta} \hat{t}=-s \dot{\theta} \hat{r} \tag{A4}
\end{equation*}
$$

(e) Refer to Fig. A2. The ($-\hat{t}$)-component of the velocity change $\Delta \vec{v}$ is given by $(-\hat{t}) \cdot \Delta \vec{v}=v \Delta \theta=v \dot{\theta} \Delta t$. Therefore, the \hat{t}-component of the acceleration $\vec{a}=\Delta \vec{v} / \Delta t$ is given by $\hat{t} \cdot \hat{a}=-v \dot{\theta}$. Since the speed v of the particle is $s \dot{\theta}$ according to Eq. (A4), we see that the \hat{t}-component of the particle's acceleration at P is given by

$$
\begin{equation*}
\vec{a} \cdot \hat{t}=-v \dot{\theta}=-(s \dot{\theta}) \dot{\theta}=-s \dot{\theta}^{2} \tag{A5}
\end{equation*}
$$

Figure A2

Note that, from Fig. A2, the radial component of the acceleration may also be obtained as $\vec{a} \cdot \hat{r}=-d v / d t=-d(s \dot{\theta}) / d t$.
(f) Refer to Fig. A3. The gravitational potential energy of the particle is given by $U=-m g h$. It may be expressed in terms of s and θ as

$$
\begin{equation*}
U(\theta)=-m g[R(1-\cos \theta)+s \sin \theta] \tag{A6}
\end{equation*}
$$

Figure A3
(g) At the lowest point of its trajectory, the particle's gravitational potential energy U must assume its minimum value U_{m}. By differentiating Eq. (A6) with respect to θ and using Eq. (A1), the angle θ_{m} corresponding to the minimum gravitational energy can be obtained.

$$
\begin{aligned}
\frac{d U}{d \theta} & =-m g\left(R \sin \theta+\frac{d s}{d \theta} \sin \theta+s \cos \theta\right) \\
& =-m g[R \sin \theta+(-R) \sin \theta+s \cos \theta] \\
& =-m g s \cos \theta
\end{aligned}
$$

At $\theta=\theta_{m},\left.\frac{d U}{d \theta}\right|_{\theta_{m}}=0$. We have $\theta_{m}=\frac{\pi}{2}$. The lowest point of the particle's trajectory is shown in Fig. A4 where the length of the string segment of QP is $s=L^{-} \pi R / 2$.

Figure A4
From Fig. A4 or Eq. (A6), the minimum potential energy is then

$$
\begin{equation*}
U_{m}=U(\pi / 2)=-m g[R+L-(\pi R / 2)] \tag{A7}
\end{equation*}
$$

Initially, the total mechanical energy E is 0 . Since E is conserved, the speed v_{m} of the particle at the lowest point of its trajectory must satisfy

$$
\begin{equation*}
E=0=\frac{1}{2} m v_{m}^{2}+U_{m} \tag{A8}
\end{equation*}
$$

From Eqs. (A7) and (A8), we obtain

$$
\begin{equation*}
v_{m}=\sqrt{-2 U_{m} / m}=\sqrt{2 g[R+(L-\pi R / 2)]} \tag{A9}
\end{equation*}
$$

Part B

(h) From Eq. (A6), the total mechanical energy of the particle may be written as

$$
\begin{equation*}
E=0=\frac{1}{2} m v^{2}+U(\theta)=\frac{1}{2} m v^{2}-m g[R(1-\cos \theta)+s \sin \theta] \tag{B1}
\end{equation*}
$$

From Eq. (A4), the speed v is equal to $s \dot{\theta}$. Therefore, Eq. (B1) implies

$$
\begin{equation*}
v^{2}=(s \dot{\theta})^{2}=2 g[R(1-\cos \theta)+s \sin \theta] \tag{B2}
\end{equation*}
$$

Let T be the tension in the string. Then, as Fig. B1 shows, the \hat{t}-component of the net force on the particle is $-T+m g \sin \theta$. From Eq. (A5), the tangential acceleration of the particle is $\left(-s \dot{\theta}^{2}\right)$. Thus, by Newton's second law, we have

$$
\begin{equation*}
m\left(-s \dot{\theta}^{2}\right)=-T+m g \sin \theta \tag{B3}
\end{equation*}
$$

Figure B1

According to the last two equations, the tension may be expressed as

$$
\begin{align*}
T & =m\left(s \dot{\theta}^{2}+g \sin \theta\right)=\frac{m g}{s}[2 R(1-\cos \theta)+3 s \sin \theta] \\
& =\frac{2 m g R}{s}\left[\tan \frac{\theta}{2}-\frac{3}{2}\left(\theta-\frac{L}{R}\right)\right](\sin \theta) \tag{B4}\\
& =\frac{2 m g R}{s}\left(y_{1}-y_{2}\right)(\sin \theta)
\end{align*}
$$

The functions $y_{1}=\tan (\theta / 2)$ and $y_{2}=3(\theta-L / R) / 2$ are plotted in Fig B2.

From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at which $. y_{2}=y_{1}$ is called $\theta_{S}\left(\pi<\theta_{s}<2 \pi\right)$ and is given by

$$
\begin{equation*}
\frac{3}{2}\left(\theta_{s}-\frac{L}{R}\right)=\tan \frac{\theta_{s}}{2} \tag{B5}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
\frac{L}{R}=\theta_{s}-\frac{2}{3} \tan \frac{\theta_{s}}{2} \tag{B6}
\end{equation*}
$$

Since the ratio L / R is known to be given by

$$
\begin{equation*}
\frac{L}{R}=\frac{9 \pi}{8}+\frac{2}{3} \cot \frac{\pi}{16}=\left(\pi+\frac{\pi}{8}\right)-\frac{2}{3} \tan \frac{1}{2}\left(\pi+\frac{\pi}{8}\right) \tag{B7}
\end{equation*}
$$

one can readily see from the last two equations that $\theta_{s}=9 \pi / 8$.
Table B1

	$\left(y_{1}-y_{2}\right)$	$\sin \theta$	tension T
$0<\theta<\pi$	positive	positive	positive
$\theta=\pi$	$+\infty$	0	positive
$\pi<\theta<\theta_{s}$	negative	negative	positive
$\theta=\theta_{s}$	zero	negative	zero
$\theta_{s}<\theta<2 \pi$	positive	negative	negative

Table B1 shows that the tension T must be positive (or the string must be taut and straight) in the angular range $0<\theta<\theta_{s}$. Once θ reaches θ_{s}, the tension T becomes zero and the part of the string not in contact with the rod will not be straight afterwards. The shortest possible value $s_{\text {min }}$ for the length s of the line segment $Q P$ therefore occurs at $\theta=\theta_{s}$ and is given by

$$
\begin{equation*}
s_{\min }=L-R \theta_{s}=R\left(\frac{9 \pi}{8}+\frac{2}{3} \cot \frac{\pi}{16}-\frac{9 \pi}{8}\right)=\frac{2 R}{3} \cot \frac{\pi}{16}=3.352 R \tag{B8}
\end{equation*}
$$

When $\theta=\theta_{s}$, we have $T=0$ and Eqs. (B2) and (B3) then leads to $v_{s}^{2}=-g s_{\min } \sin \theta_{s}$. Hence the speed v_{s} is

$$
\begin{align*}
v_{s} & =\sqrt{-g s_{\min } \sin \theta_{s}}=\sqrt{\frac{2 g R}{3} \cot \frac{\pi}{16} \sin \frac{\pi}{8}}=\sqrt{\frac{4 g R}{3}} \cos \frac{\pi}{16} \tag{B9}\\
& =1.133 \sqrt{g R}
\end{align*}
$$

(i) When $\theta \geq \theta_{s}$, the particle moves like a projectile under gravity. As shown in Fig. B3, it is projected with an initial speed v_{s} from the position $P=\left(x_{s}, y_{s}\right)$ in a direction making an angle $\phi=\left(3 \pi / 2-\theta_{s}\right)$ with the y-axis.
The speed v_{H} of the particle at the highest point of its parabolic trajectory is equal to the y-component of its initial velocity when projected. Thus,

$$
\begin{equation*}
v_{H}=v_{s} \sin \left(\theta_{s}-\pi\right)=\sqrt{\frac{4 g R}{3}} \cos \frac{\pi}{16} \sin \frac{\pi}{8}=0.4334 \sqrt{g R} \tag{B10}
\end{equation*}
$$

The horizontal distance H traveled by the particle from point P to the point of maximum height is

$$
\begin{equation*}
H=\frac{v_{s}^{2} \sin 2\left(\theta_{s}-\pi\right)}{2 g}=\frac{v_{s}^{2}}{2 g} \sin \frac{9 \pi}{4}=0.4535 R \tag{B11}
\end{equation*}
$$

The coordinates of the particle when $\theta=\theta_{s}$ are given by

$$
\begin{align*}
& x_{s}=R \cos \theta_{s}-s_{\min } \sin \theta_{s}=-R \cos \frac{\pi}{8}+s_{\min } \sin \frac{\pi}{8}=0.358 R \tag{B12}\\
& y_{s}=R \sin \theta_{s}+s_{\min } \cos \theta_{s}=-R \sin \frac{\pi}{8}-s_{\min } \cos \frac{\pi}{8}=-3.478 R \tag{B13}
\end{align*}
$$

Evidently, we have $\left|y_{s}\right|>(R+H)$. Therefore the particle can indeed reach its maximum height without striking the surface of the rod.

Part C

(j) Assume the weight is initially lower than O by h as shown in Fig. C1.

When the weight has fallen a distance D and stopped, the law of conservation of total mechanical energy as applied to the particle-weight pair as a system leads to

$$
\begin{equation*}
-M g h=E^{\prime}-M g(h+D) \tag{C1}
\end{equation*}
$$

where E^{\prime} is the total mechanical energy of the particle when the weight has stopped. It follows

$$
\begin{equation*}
E^{\prime}=M g D \tag{C2}
\end{equation*}
$$

Let Λ be the total length of the string. Then, its value at $\theta=0$ must be the same as at any other angular displacement θ. Thus we must have

$$
\begin{equation*}
\Lambda=L+\frac{\pi}{2} R+h=s+R\left(\theta+\frac{\pi}{2}\right)+(h+D) \tag{C3}
\end{equation*}
$$

Noting that $D=\alpha L$ and introducing $\ell=L-D$, we may write

$$
\begin{equation*}
\ell=L-D=(1-\alpha) L \tag{C4}
\end{equation*}
$$

From the last two equations, we obtain

$$
\begin{equation*}
s=L-D-R \theta=\ell-R \theta \tag{C5}
\end{equation*}
$$

After the weight has stopped, the total mechanical energy of the particle must be conserved. According to Eq. (C2), we now have, instead of Eq. (B1), the following equation:

$$
\begin{equation*}
E^{\prime}=M g D=\frac{1}{2} m v^{2}-m g[R(1-\cos \theta)+s \sin \theta] \tag{C6}
\end{equation*}
$$

The square of the particle's speed is accordingly given by

$$
\begin{equation*}
v^{2}=(s \dot{\theta})^{2}=\frac{2 M g D}{m}+2 g R\left[(1-\cos \theta)+\frac{s}{R} \sin \theta\right] \tag{C7}
\end{equation*}
$$

Since Eq. (B3) stills applies, the tension T of the string is given by

$$
\begin{equation*}
-T+m g \sin \theta=m\left(-s \dot{\theta}^{2}\right) \tag{C8}
\end{equation*}
$$

From the last two equations, it follows

$$
\begin{align*}
T & =m\left(s \dot{\theta}^{2}+g \sin \theta\right) \\
& =\frac{m g}{s}\left[\frac{2 M}{m} D+2 R(1-\cos \theta)+3 s \sin \theta\right] \tag{C9}\\
& =\frac{2 m g R}{s}\left[\frac{M D}{m R}+(1-\cos \theta)+\frac{3}{2}\left(\frac{\ell}{R}-\theta\right) \sin \theta\right]
\end{align*}
$$

where Eq. (C5) has been used to obtain the last equality.
We now introduce the function

$$
\begin{equation*}
f(\theta)=1-\cos \theta+\frac{3}{2}\left(\frac{\ell}{R}-\theta\right) \sin \theta \tag{C10}
\end{equation*}
$$

From the fact $\ell=(L-D) \gg R$, we may write

$$
\begin{equation*}
f(\theta) \approx 1+\frac{3}{2} \frac{\ell}{R} \sin \theta-\cos \theta=1+A \sin (\theta-\phi) \tag{C11}
\end{equation*}
$$

where we have introduced

$$
\begin{equation*}
A=\sqrt{1+\left(\frac{3}{2} \frac{\ell}{R}\right)^{2}}, \quad \phi=\tan ^{-1}\left(\frac{2 R}{3 \ell}\right) \tag{C12}
\end{equation*}
$$

From Eq. (C11), the minimum value of $f(\theta)$ is seen to be given by

$$
\begin{equation*}
f_{\min }=1-A=1-\sqrt{1+\left(\frac{3}{2} \frac{\ell}{R}\right)^{2}} \tag{C13}
\end{equation*}
$$

Since the tension T remains nonnegative as the particle swings around the rod, we have from Eq. (C9) the inequality

$$
\begin{equation*}
\frac{M D}{m R}+f_{\min }=\frac{M(L-\ell)}{m R}+1-\sqrt{1+\left(\frac{3 \ell}{2 R}\right)^{2}} \geq 0 \tag{C14}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{M L}{m R}\right)+1 \geq\left(\frac{M \ell}{m R}\right)+\sqrt{1+\left(\frac{3 \ell}{2 R}\right)^{2}} \approx\left(\frac{M \ell}{m R}\right)+\left(\frac{3 \ell}{2 R}\right) \tag{C15}
\end{equation*}
$$

From Eq. (C4), Eq. (C15) may be written as

$$
\begin{equation*}
\left(\frac{M L}{m R}\right)+1 \geq\left(\frac{M L}{m R}+\frac{3 L}{2 R}\right)(1-\alpha) \tag{C16}
\end{equation*}
$$

Neglecting terms of the order (R / L) or higher, the last inequality leads to

$$
\begin{equation*}
\alpha \geq 1-\frac{\left(\frac{M L}{m R}\right)+1}{\left(\frac{M L}{m R}+\frac{3 L}{2 R}\right)}=\frac{\frac{3 L}{2 R}-1}{\frac{M L}{m R}+\frac{3 L}{2 R}}=\frac{1-\frac{2 R}{3 L}}{\frac{2 M}{3 m}+1} \approx \frac{1}{1+\frac{2 M}{3 m}} \tag{C17}
\end{equation*}
$$

The critical value for the ratio D / L is therefore

$$
\begin{equation*}
\alpha_{c}=\frac{1}{1+\frac{2 M}{3 m}} \tag{C18}
\end{equation*}
$$

Marking Scheme

Theoretical Question 1

A Swing with a Falling Weight

Total Scores	Sub Scores	Marking Scheme for Answers to the Problem	
Part A 4.3 pts.	(a) 0.5	$\begin{aligned} & \text { Relation between } \dot{\theta} \text { and } \dot{s} . \quad(\dot{s}=-R \dot{\theta}) \\ & \\ & \\ & \\ & \\ & 0.2 \text { for } \dot{\theta} \propto \dot{s} . \end{aligned}$	
	(b) 0.5	Velocity of Q relative to $O . \quad\left(\vec{v}_{Q}=R \dot{\theta} \hat{t}\right)$ >0.2 for magnitude $R \dot{\theta}$. >0.3 for direction \hat{t}.	
	$\begin{aligned} & \hline \text { (c) } \\ & 0.7 \end{aligned}$	Particle's velocity at P relative to $Q .\left(\bar{v}^{\prime}=-s \dot{\theta} \hat{r}+\dot{s} \hat{t}\right)$ $>0.2+0.1$ for magnitude and direction of \hat{r}-component. $>0.3+0.1$ for magnitude and direction of \hat{t}-component.	
	$\begin{aligned} & \text { (d) } \\ & 0.7 \end{aligned}$	Particle's velocity at P relative to $O . \quad\left(\vec{v}=\vec{v}^{\prime}+\vec{v}_{Q}=-s \dot{\theta} \hat{r}\right)$ >0.3 for vector addition of \vec{v}^{\prime} and \vec{v}_{Q}. $>0.2+0.2$ for magnitude and direction of \vec{v}.	
	(e) 0.7	```\(\hat{t}\)-component of particle's acceleration at \(P\). 0.3 for relating \(\vec{a}\) or \(\vec{a} \cdot \hat{t}\) to the velocity in a way that implies \(\|\vec{a} \cdot \hat{t}	=v^{2} / s\). 0.4 for \(\vec{a} \cdot \hat{t}=-s \dot{\theta}^{2} \quad\) (0.1 for minus sign.)```
	$\begin{aligned} & \hline \text { (f) } \\ & 0.5 \end{aligned}$	Potential energy U. >0.2 for formula $U=-m g h$. >0.3 for $h=R(1-\cos \theta)+s \sin \theta$ or U as a function of θ, s, and R.	
	$\begin{aligned} & \hline \text { (g) } \\ & 0.7 \end{aligned}$	Speed at lowest point v_{m}. 0.2 for lowest point at $\theta=\pi / 2$ or U equals minimum U_{m}. 0.2 for total mechanical energy $E=m v_{m}^{2} / 2+U_{m}=0$. 0.3 for $v_{m}=\sqrt{-2 U_{m} / m}=\sqrt{2 g[R+(L-\pi R / 2)]}$.	
Part B 4.3 pts.	(h) 2.4	Particle's speed v_{s} when $\overline{Q P}$ is shortest. 0.4 for tension T becomes zero when $\overline{Q P}$ is shortest. 0.3 for equation of motion $-T+m g \sin \theta=m\left(-s \dot{\theta}^{2}\right)$. 0.3 for $E=0=m(s \dot{\theta})^{2} / 2-m g[R(1-\cos \theta)+s \sin \theta]$. 0.4 for $\frac{3}{2}\left(\theta_{s}-\frac{L}{R}\right)=\tan \frac{\theta_{s}}{2}$. 0.5 for $\theta_{s}=9 \pi / 8$. $0.3+0.2$ for $v_{s}=\sqrt{4 g R / 3} \cos \pi / 16=1.133 \sqrt{g R}$	

	(i) 1.9	The speed v_{H} of the particle at its highest point. >0.4 for particle undergoes projectile motion when $\theta \geq \theta_{s}$. >0.3 for angle of projection $\phi=\left(3 \pi / 2-\theta_{s}\right)$. >0.3 for v_{H} is the y-component of its velocity at $\theta=\theta_{s}$. >0.4 for noting particle does not strike the surface of the rod. $>0.3+0.2$ for $v_{H}=\sqrt{4 g R / 3} \cos (\pi / 16) \sin (\pi / 8)=0.4334 \sqrt{g R} .$
Part C 3.4 pts	(j) 3.4	The critical value α_{c} of the ratio D / L. 0.4 for particle's energy $E^{\prime}=M g D$ when the weight has stopped. 0.3 for $s=L-D-R \theta$. 0.3 for $E^{\prime}=M g D=m v^{2} / 2-m g[R(1-\cos \theta)+s \sin \theta]$. 0.3 for $-T+m g \sin \theta=m\left(-s \dot{\theta}^{2}\right)$. 0.3 for concluding T must not be negative. 0.6 for an inequality leading to the determination of the range of D / L. 0.6 for solving the inequality to give the range of $\alpha=D / L$. 0.6 for $\alpha_{c}=(1+2 M / 3 \mathrm{~m})$.

