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Solution to Theoretical Question 1 
 

A Swing with a Falling Weight 

Part A 
(a) Since the length of the string θRsL +=  is constant, its rate of change must be zero. 

Hence we have 
0=+ θ Rs                              (A1) 

(b) Relative to O, Q moves on a circle of radius R with angular velocity θ , so 

tstRvQ
ˆˆ




 −== θ                           (A2) 

(c) Refer to Fig. A1. Relative to Q, the displacement of P in a time interval ∆t 
is ttsrstsrsr ∆+−=∆+−∆=′∆ ]ˆ)ˆ)([(ˆ)()ˆ)(( 



 θθ . It follows 

tsrsv ˆˆ 



 +−=′ θ                            (A3) 

 
 
 
 
 
 
 
 
 
 
(d) The velocity of the particle relative to O is the sum of the two relative velocities given in 

Eqs. (A2) and (A3) so that 

rstRtsrsvvv Q ˆˆ)ˆˆ( θθθ 





 −=++−=+′=                (A4) 

(e) Refer to Fig. A2. The ( t̂− )-component of the velocity change v∆  is given 
by tvvvt ∆=∆=∆⋅− θθ 

)ˆ( . Therefore, the t̂ -component of the acceleration tva ∆∆= /  
is given by θvat −=⋅ ˆˆ . Since the speed v of the particle is θs  according to Eq. (A4), 
we see that the t̂ -component of the particle’s acceleration  at P is given by 

2)(ˆ θθθθ 

 ssvta −=−=−=⋅                        (A5) 

 
 
 
 
 
 

t̂  

Q 

r̂−  

s 

s+∆s ∆θ 

s∆θ 
P 

Figure A1 

r ′∆  
s+∆s 

t̂−  

Q 

r̂−  

v  
∆θ 

P 

θ∆v  

Figure A2 O 

∆θ 

v∆  
vv  ∆+  

∆v 

v 



 

 13 

Note that, from Fig. A2, the radial component of the acceleration may also be obtained as 

dtsddtdvra /)(/ˆ θ −=−=⋅ . 

(f) Refer to Fig. A3. The gravitational potential energy of the particle is given by mghU −= . 
It may be expressed in terms of s and θ  as 

]sin)cos1([)( θθθ sRmgU +−−=                  (A6) 
 
 
 
 
 
 
 
 
 
(g) At the lowest point of its trajectory, the particle’s gravitational potential energy  U must 

assume its minimum value Um

mθ
. By differentiating Eq. (A6) with respect to θ and using 

Eq. (A1), the angle  corresponding to the minimum gravitational energy can be 
obtained. 
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At mθθ = , 0=
m

d
dU

θθ
. We have

2
πθ =m . The lowest point of the particle’s trajectory is 

shown in Fig. A4 where the length of the string segment of QP is s = L−πR /2. 
 
 
 
 
 
 
 
 
 
 

From Fig. A4 or Eq. (A6), the minimum potential energy is then 
( ) )]2/([2/ RLRmgUUm ππ −+−==                  (A7) 

Initially, the total mechanical energy E is 0. Since E is conserved, the speed  vm of the 
particle at the lowest point of its trajectory must satisfy 
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mm UmvE +== 2
2
10                           (A8) 

From Eqs. (A7) and (A8), we obtain 

)]2/([2/2 RLRgmUv mm π−+=−=                 (A9) 

 

Part B 
(h) From Eq. (A6), the total mechanical energy of the particle may be written as 

]sin)cos1([
2
1)(

2
10 22 θθθ sRmgmvUmvE +−−=+==          (B1) 

From Eq. (A4), the speed v is equal to θs . Therefore, Eq. (B1) implies 

]sin)cos1([2)( 22 θθθ sRgsv +−==                   (B2) 

Let T be the tension in the string. Then, as Fig. B1 shows, the t̂ -component of the net 
force on the particle is –T + mg sin θ . From Eq. (A5), the tangential acceleration of the 
particle is )( 2θs− . Thus, by Newton’s second law, we have 

θθ sin)( 2 mgTsm +−=−                          (B3) 
 
 
 
 
 
 
 
 
 
 
 
 

According to the last two equations, the tension may be expressed as 
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          (B4) 

 
The functions )2/tan(1 θ=y  and 2/)/(32 RLy −= θ  are plotted in Fig B2. 
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at 
which .y2 = y1 sθ is called ( πθπ 2<< s ) and is given by 

2
tan)(

2
3 s

s R
L θ

θ =−                          (B5) 

or, equivalently, by 

2
tan

3
2 s

sR
L θ

θ −=                           (B6) 

Since the ratio L/R is known to be given by 

)
8

(
2
1tan

3
2)

8
(

16
cot

3
2

8
9 ππππππ +−+=+=

R
L               (B7) 

one can readily see from the last two equations that 8/9πθ =s . 

 
Table B1 shows that the tension T must be positive (or the string must be taut and straight) 
in the angular range 0<θ  < θ s. Once θ  reaches θ s, the tension T becomes zero and the 
part of the string not in contact with the rod will not be straight afterwards. The shortest 
possible value smin sθθ = for the length s of the line segment QP therefore occurs at and 
is given by 

Table B1 

 )( 21 yy −  θsin   tension T 

πθ <<0  positive positive positive 
πθ =  + ∞ 0 positive 

sθθπ <<  negative negative positive 

sθθ =  zero negative zero 
πθθ 2<<s  positive negative negative 
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RRRRLs s 352.3
16

cot
3

2)
8

9
16

cot
3
2

8
9(min ==−+=−= ππππθ         (B8) 

When sθθ = , we have T = 0 and Eqs. (B2) and (B3) then leads to ss gsv θsinmin
2 −= . 

Hence the speed  v s

gR

gRgRgsv ss

133.1
16

cos
3

4
8

sin
16

cot
3

2sinmin

=

==−= πππθ

 is 

         (B9) 

 
(i) When sθθ ≥ , the particle moves like a projectile under gravity. As shown in Fig. B3, it is 

projected with an initial speed  v s ),( ss yxP = from the position  in a direction making 
an angle )2/3( sθπφ −= with the y-axis. 
The speed Hv of the particle at the highest point of its parabolic trajectory is equal to the 
y-component of its initial velocity when projected. Thus, 

gRgRvv ssH 4334.0
8

sin
16

cos
3

4)sin( ==−= πππθ          (B10) 

The horizontal distance H traveled by the particle from point P to the point of maximum 
height is 

R
g

v
g

v
H sss 4535.0

4
9sin

22
)(2sin 22

==
−

= ππθ
              (B11) 

 
 
 
 
 
 
 
 
 
 
 

The coordinates of the particle when sθθ = are given by 

RsRsRx sss 358.0
8

sin
8

cossincos minmin =+−=−= ππθθ         (B12) 

RsRsRy sss 478.3
8

cos
8

sincossin minmin −=−−=+= ππθθ        (B13) 

Evidently, we have )(|| HRys +> . Therefore the particle can indeed reach its maximum 
height without striking the surface of the rod. 
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Part C 
(j) Assume the weight is initially lower than O by h as shown in Fig. C1. 
 
 
 
 
 
 
 
 
 

When the weight has fallen a distance D and stopped, the law of conservation of total 
mechanical energy as applied to the particle-weight pair as a system leads to 

)( DhMgEMgh +−′=−                         (C1) 
where E′ is the total mechanical energy of the particle when the weight has stopped. It 
follows 

MgDE =′                               (C2) 
Let Λ be the total length of the string. Then, its value at θ = 0 must be the same as at any 
other angular displacement θ. Thus we must have 

)()
2

(
2

DhRshRL ++++=++= πθπΛ                 (C3) 

Noting that D = α L and introducing ℓ = L−D, we may write 
LDL )1( α−=−=                              (C4) 

From the last two equations, we obtain 
θθ RRDLs −=−−=                            (C5) 

After the weight has stopped, the total mechanical energy of the particle must be 
conserved. According to Eq. (C2), we now have, instead of Eq. (B1), the following 
equation: 

[ ]θθ sin)cos1(
2
1 2 sRmgmvMgDE +−−==′              (C6) 

The square of the particle’s speed is accordingly given by 





 +−+== θθθ sin)cos1(22)( 22

R
sgR

m
MgDsv              (C7) 

Since Eq. (B3) stills applies, the tension T of the string is given by 

)(sin 2θθ smmgT −=+−                        (C8) 
From the last two equations, it follows 
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where Eq. (C5) has been used to obtain the last equality. 
We now introduce the function 

θθθθ sin
2
3cos1)( 






 −+−=

R
f                      (C10) 

From the fact RDL >>−= )( , we may write 

)sin(1cossin
2
31)( φθθθθ −+=−+≈ A

R
f                (C11) 

where we have introduced 
2)

2
3(1

R
A +=  ,  






= −

3
2tan 1 Rφ                   (C12) 

From Eq. (C11), the minimum value of f(θ) is seen to be given by 
2

min 2
3111 






+−=−=

R
Af                       (C13) 

Since the tension T remains nonnegative as the particle swings around the rod, we have 
from Eq. (C9) the inequality 
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From Eq. (C4), Eq. (C15) may be written as 

)1(
2
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ML                     (C16) 

Neglecting terms of the order (R/L) or higher, the last inequality leads to 
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−≥α           (C17) 

The critical value for the ratio D/L is therefore 
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Marking Scheme 
 

Theoretical Question 1 
A Swing with a Falling Weight 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.3 pts. 

(a) 
 

0.5 

Relation between θ and s .  ( θ Rs −= )            
 0.2 for θ∝ s . 
 0.3 for proportionality constant (-R). 

(b) 
 

0.5 

Velocity  of Q relative to O.  ( tRvQ
ˆθ = )            

 0.2 for magnitude Rθ . 
 0.3 for direction t̂ . 

(c) 
 

0.7 

Particle’s velocity  at P relative to Q. ( tsrsv ˆˆ 



 +−=′ θ )    
 0.2+0.1 for magnitude and direction of r̂ -component. 
 0.3+0.1 for magnitude and direction of t̂ -component. 

(d) 
0.7 

Particle’s velocity  at P relative to O.  ( rsvvv Q ˆθ −=+′= ) 
 0.3 for vector addition of v ′  and Qv . 
 0.2+0.2 for magnitude and direction of v . 

(e) 
 

0.7 

t̂ -component of particle’s acceleration at P. 
 0.3 for relating a  or ta ˆ⋅  to the velocity in a way that implies 

svta /|ˆ| 2=⋅ . 
 0.4 for 2ˆ θ sta −=⋅  (0.1 for minus sign.) 

(f) 
 

0.5 

Potential energy U. 
 0.2 for formula mghU −= . 
 0.3 for θθ sin)cos1( sRh +−=  or U as a function of θ, s, and R. 

(g) 
 

0.7 

Speed at lowest point vm.  
 0.2 for lowest point at 2/πθ =  or U equals minimum Um. 
 0.2 for total mechanical energy 02/2 =+= mm UmvE . 

 0.3 for )]2/([2/2 RLRgmUv mm π−+=−= . 
Part B 

 
4.3 pts. 

(h) 
 

2.4 

Particle’s speed  vs when QP is shortest. 
 0.4 for tension T becomes zero when QP is shortest. 

 0.3 for equation of motion )(sin 2θθ smmgT −=+− . 

 0.3 for ]sin)cos1([2/)(0 2 θθθ sRmgsmE +−−==  . 

 0.4 for 
2

tan)(
2
3 s

s R
L θ

θ =− . 

 0.5 for 8/9πθ =s . 

 0.3+0.2  for gRgRvs 133.116/cos3/4 == π  
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(i) 
 

1.9 

The speed vH of the particle at its highest point. 
 0.4 for particle undergoes projectile motion when sθθ ≥ . 
 0.3 for angle of projection )2/3( sθπφ −= . 
 0.3 for Hv  is the y-component of its velocity at sθθ = . 
 0.4 for noting particle does not strike the surface of the rod. 
 0.3+0.2 for 

gRgRvH 4334.0)8/sin()16/cos(3/4 == ππ . 
Part C 

 
3.4 pts 

(j) 
 

3.4 

The critical value cα  of the ratio D/L. 
 0.4 for particle’s energy MgDE =′  when the weight has stopped. 
 0.3 for θRDLs −−= . 
 0.3 for ]sin)cos1([2/2 θθ sRmgmvMgDE +−−==′ . 

 0.3 for )(sin 2θθ smmgT −=+− . 
 0.3 for concluding T must not be negative. 
 0.6 for an inequality leading to the determination of the range of D/L. 
 0.6 for solving the inequality to give the range of α = D/L. 
 0.6 for )3/21( mMc +=α . 
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