Solution to Theoretical Question 2

A Piezoelectric Crystal Resonator under an Alternating Voltage

Part A
(@) Refer to Figure Al. The left face of the rod moves a distance vAt while the pressure wave
travels a distance uAt with u = /Y / p . The strain at the left face is

S:A_é_—vAt_—v

= =" Al
l uAat u (Ala)
From Hooke’s law, the pressure at the left face is
p:—YS:Y%:puv (Alb)
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(b) The velocity v is related to the displacement & as in a simple harmonic motion (or a
uniform circular motion, as shown in Figure A2) of angular frequency @ = ku . Therefore,
IfE(x,t) =&y sink(x —ut), then

v(X,t) = —ku&y cosk(x —ut). (A2)
The strain and pressure are related to velocity as in Problem (a). Hence,

S(x,t) =—-v(x,t)/u=ké&ycosk(x—ut) (A3)

p(x,t) = puv(x,t) = —kpu?&, cosk(x —ut)

(Ad)
=-YS(x,t) = —kY&y cosk(x —ut)

Alternatively, the answers may be obtained by differentiations:

v(x,t) = 4 =—kué, cosk(x—ut),

At
S(x,t) = % = k&, cosk(x—ut), Figure A2
(x t)——YA———kY§ cosk(x —ut)
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Part B

(c) Since the angular frequency @ and speed of propagation u are given, the wavelength is
given by A =2z / k with k = @/ u. The spatial variation of the displacement &is therefore
described by

g(x) =B, sin k(x—ngr B, cosk(x—gj (B1)

Since the centers of the electrodes are assumed to be stationary, g(b/2) = 0. This leads to
B, = 0. Given that the maximum of g(x) is 1, we have B; = +1 and

g(x) = isin%(x —g) (B2)
Thus, the displacement is

E(x,t) = £2&, sin%[x—gjcoswt (B3)

(d) Since the pressure p (or stress T) must vanish at the end faces of the quartz slab (i.e., x =0
and x = b), the answer to this problem can be obtained, by analogy, from the resonant
frequencies of sound waves in an open pipe of length b. However, given that the centers
of the electrodes are stationary, all even harmonics of the fundamental tone must be
excluded because they have antinodes, rather than nodes, of displacement at the bisection
plane of the slab.

Since the fundamental tone has a wavelength A= 2b, the fundamental frequency is
given by f; =u/(2b). The speed of propagation u is given by

10
u= \ﬁ - M =5.45x10% m/s (B4)
Y 2.65x10
and, given that b =1.00x102 m, the two lowest standing wave frequencies are
u 3u
f, = e 273 (kHz), fy=3f, = 5= 818 (kHz) (BS)

[Alternative solution to Problems (c) and (d)]:

A longitudinal standing wave in the quartz slab has a displacement node at x = b/2. It
may be regarded as consisting of two waves traveling in opposite directions. Thus, its
displacement and velocity must have the following form

E(x,t)=¢&, [sin k(x —g— utj +sin k(x —g-i- utﬂ

=2&, sin k(x —g) cosawt

v(x,t) =—-ku&, {cos k(x —g— utj —C0S k(x —g-i- utﬂ

=—-2w&, sin k(x —g)sin ot

(B6)

(B7)

where @ = ku and the first and second factors in the square brackets represent waves
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traveling along the +x and —x directions, respectively. Note that Eq. (B6) is identical to Eq.
(B3) if we set &y = =&

For a wave traveling along the —x direction, the velocity v must be replaced by —v in
Egs. (Ala) and (Alb) so that we have

S = _TV and p=puv (waves traveling along +x) (B8)

S :% and p=-puv  (waves traveling along —x) (B9)

As in Problem (b), the strain and pressure are therefore given by

S(x,t) =-k¢&, {— cos k(x —g— ut) —C0S k(x —g+ utﬂ

(B10)
= 2k&,, cos k(x —g) coswt

p(x,t)=—p Ua);{cos k(x —g— ut) + C0S k(x —g+ utﬂ
(B11)

=-2pUuwé, cos k(x —gj coswt

Note that v, S, and p may also be obtained by differentiating & as in Problem (b).
The stress T or pressure p must be zero at both ends (x = 0 and x = b) of the slab at all
times because they are free. From Eq. (B11), this is possible only if cos(kb/2) =0or
27f

_On_ -
kb = . b g b=nr, n=135, (B12)
In terms of wavelength 4, Eq. (B12) may be written as
z:z—nb, N=135,-. (B13)
The frequency is given by
_u_nu_n J¥ -
TR n=135,:--. (B14)

This is identical with the results given in Egs. (B4) and (B5).

(e) From Eqgs. (5a) and (5b) in the Question, the piezoelectric effect leads to the equations
T=Y(S-d,E) (B15)

d 2

aszpS+gT[1—Y —ij (B16)
&r

Because x = b/2 must be a node of displacement for any longitudinal standing wave in the

slab, the displacement &and strain S must have the form given in Egs. (B6) and (B10), i.e.,
with o =ku,

E(x,t)=¢&, sin k(x—gjcos(wt+¢) (B17)
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S(x,t) =k&, cos k(x - g) cos(at + @) (B18)

where a phase constant ¢ is now included in the time-dependent factors.
By assumption, the electric field E between the electrodes is uniform and depends only

on time:

V() Vpycosot

E(xt) = > : (B19)
Substituting Egs. (B18) and (B19) into Eq. (B15), we have
d
T :Y{kgm cos k(x—gj cos(awt + @) —T"Vm coswt} (B20)

The stress T must be zero at both ends (x = 0 and x = b) of the slab at all times because they
are free. This is possible only if ¢ =0 and

kb V
k& cos—=d -1 B21
§no0s—-=d, = (B21)

Since ¢ =0, Egs. (B16), (B18), and (B19) imply that the surface charge density must have
the same dependence on time t and may be expressed as

o(x,t) =o(x)cosmt (B22)
with the dependence on x given by

d2
U(X)=dek§mcosk[x—9j+g{1_y_p]v_m
2 & | h
d2 d2 (823)
=Y pkb cosk(x—9)+g{1_y_pJ Vin
cos? 2 g )| h

(F) At time t, the total surface charge Q(t) on the lower electrode is obtained by integrating
o(x,t)in Eq. (B22) over the surface of the electrode. The result is

wzi IDa(x,t)wdx:ij‘ba(x)wdx
V(D) V() V_ o
d? d?
=ﬂj‘b Iy —- cosk(x—9)+gT(1—Y—”)]dx
hio ™ cos k2 2 &
2 (B24)
d’ d’
=(8T b—WjY—pﬂitan@j+ 1-y—*%
h & \ kb 2 &
=C, Z(Etan@jﬂl—az
kb 2
where
d2 2 -2
Congb—W, g? =y o L 220 X107 405 103 (B25)
h & 1.27x4.06

(The constant « is called the electromechanical coupling coefficient.)
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Note: The result C o= &1 bw/h can readily be seen by considering the static limitk =0
of Eq. (5) in the Question. Sincetan X ~ X when x << 1, we have

klimOQ(t)/V(t) ~Cola® +(1-a?)]=C, (B26)

Evidently, the constant C, is the capacitance of the parallel-plate capacitor formed by the
electrodes (of area bw) with the quartz slab (of thickness h and permittivity £7) serving as
the dielectric medium. It is therefore given by £+ bw/h.
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Marking Scheme

Theoretical Question 2

A Piezoelectric Crystal Resonator under an Alternating Voltage

Total Sub Marking Scheme for Answers to the Problem
Scores | Scores
Part A @) The strain S and pressure p on the left face.
» 0.4 for |A¢f| = vAtand ¢ = uAt.
4.0 pts. 1.6 » 0.4 for S =-vlu. (0.1 br 49gn)
» 0.4 forrelatingp to Sas p=-YS. (0.1 for sign)
> 0.4 forp=puv. (0.1 for sign)
(b) The velocity v(x, t), strain S(x, t), and pressure p(x, t).
» 0.3x3 sinusoidal variation with correct phase constant. (0.2 for phase
2.4 constant.)
» 0.3x3 for amplitude.
> 0.2x3 for dependence on x and t as (kx- ku t).
Part B () The function g(x) for a standing wave of angular frequency w.
> 0.4 for g(b/2) = 0.
6.0pts| 12 |» 0.3+0.1 for By==1 (0.1 for both signs)
» 04forB,=0
(d) The two lowest standing wave frequencies.
» 0.2 for wavelength of fundamental tone 4 = 2b.
1.2 » 0.2 for excluding even harmonics.
» (0.3+0.1) for f; = u/2b = 273 kHz. (0.1 for value)
» (0.3+0.1) for f3 = 3u/2b = 818 kHz. (0.1 for value)
(e) The surface charge density o as a function of x and t.
» 0.1x2 for £ and S, each a separable function of x and t.
2.2 |» 0.1x2for £and S, each depends on time as cos wt with ¢ = 0.
» 0.3 for spatial part &£(x) =&, sink(x—b/2).
» 0.3 for spatial part S(x) =ké&,, cosk(x—b/2).
> 03for T(x)=[ké,cosk(x—b/2)—-dV, /h]Y.
» 03for k&, cos(kb/2)=dV,/h.
» 0.6 for Dy (0.3) and D; (0.3) ino(x) .
() |The constants Co and 2.
14 » 0.2 for relation between oand Q as

QM = (] o (x)wdx) cos wt.

» 0.3 for noting Q(t)/V(t) ~ Cpask — 0.
» 0.4 for Cy=erbw/h.
» 0.4+0.1for o® =Yd} /& =9.82%x107°. (0.1 for value)
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