THEORETICAL PROBLEM No. 1

EVOLUTION OF THE EARTH-MOON SYSTEM

SOLUTIONS

1. Conservation of Angular Momentum

1a	$L_{1}=I_{E} \omega_{E 1}+I_{M 1} \omega_{M 1}$	0.2
1b	$L_{2}=I_{E} \omega_{2}+I_{M 2} \omega_{2}$	0.2
1c	$I_{E} \omega_{E 1}+I_{M 1} \omega_{M 1}=I_{M 2} \omega_{2}=L_{1}$	0.3

2. Final Separation and Angular Frequency of the Earth-Moon System.

2 a	$\omega_{2}^{2} D_{2}^{3}=G M_{E}$	0.2

2 b	$D_{2}=\frac{L_{1}^{2}}{G M_{E} M_{M}^{2}}$	0.5

$$
\begin{array}{|l|l|l|}
\hline 2 \mathrm{c} & \omega_{2}=\frac{G^{2} M_{E}^{2} M_{M}^{3}}{L_{1}^{3}} & 0.5 \\
\hline
\end{array}
$$

2 d	The moment of inertia of the Earth will be the addition of the moment of inertia of a sphere with radius r_{o} and density ρ_{o} and of a sphere with radius r_{i} and density $\rho_{i}-\rho_{o}:$ $I_{E}=\frac{2}{5} \frac{4 \pi}{3}\left[r_{o}^{5} \rho_{o}+r_{i}^{5}\left(\rho_{i}-\rho_{o}\right)\right]$.	0.5

2 e	$I_{E}=\frac{2}{5} \frac{4 \pi}{3}\left[r_{o}^{5} \rho_{o}+r_{i}^{5}\left(\rho_{i}-\rho_{o}\right)\right]=8.0 \times 10^{37} \mathrm{~kg} \mathrm{~m}^{2}$	0.2

2 f	$L_{1}=I_{E} \omega_{E 1}+I_{M 1} \omega_{M 1}=3.4 \times 10^{34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$	0.2

2 g	$D_{2}=5.4 \times 10^{8} \mathrm{~m}$, that is $D_{2}=1.4 D_{1}$	0.3

2 h	$\omega_{2}=1.6 \times 10^{-6} \mathrm{~s}^{-1}$, that is, a period of 46 days.	0.3

2 i	Since $I_{E} \omega_{2}=1.3 \times 10^{32} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and $I_{M 2} \omega_{2}=3.4 \times 10^{34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, the approximation is justified since the final angular momentum of the Earth is $1 / 260$ of that of the Moon.	0.2

3. How much is the Moon receding per year?

3 a	Using the law of cosines, the magnitude of the force produced by the mass m closest to the Moon will be: $F_{c}=\frac{G m M_{M}}{D_{1}^{2}+r_{o}^{2}-2 D_{1} r_{o} \cos (\theta)}$	0.4

3b \quad Using the law of cosines, the magnitude of the force produced by the mass 0.4 m farthest to the Moon will be:
$F_{f}=\frac{G m M_{M}}{D_{1}^{2}+r_{o}^{2}+2 D_{1} r_{o} \cos (\theta)}$

$3 c$	Using the law of sines, the torque will be $\tau_{c}=F_{c} \frac{\sin (\theta) r_{0} D_{1}}{\left[D_{1}^{2}+r_{o}^{2}-2 D_{1} r_{o} \cos (\theta)\right]^{1 / 2}}=\frac{G m M_{M} \sin (\theta) r_{0} D_{1}}{\left[D_{1}^{2}+r_{o}^{2}-2 D_{1} r_{o} \cos (\theta)\right]^{3 / 2}}$	0.4

3 d	$\begin{array}{l}\text { Using the law of sines, the torque will be } \\ \tau_{f}=F_{f} \frac{\sin (\theta) r_{0} D_{1}}{\left[D_{1}^{2}+r_{o}^{2}+2 D_{1} r_{o} \cos (\theta)\right]^{1 / 2}}=\frac{G m M_{M} \sin (\theta) r_{0} D_{1}}{\left[D_{1}^{2}+r_{o}^{2}+2 D_{1} r_{o} \cos (\theta)\right]^{3 / 2}}\end{array}$	0.4

$$
\begin{array}{|l|l|l|}
\hline 3 \mathrm{e} & \tau_{c}-\tau_{f}=G m M_{M} \sin (\theta) r_{0} D_{1}^{-2}\left(1-\frac{3 r_{o}^{2}}{2 D_{1}^{2}}+\frac{3 r_{o} \cos (\theta)}{D_{1}}-1+\frac{3 r_{o}^{2}}{2 D_{1}^{2}}+\frac{3 r_{o} \cos (\theta)}{D_{1}}\right) & 1.0 \\
& =\frac{6 G m M_{M} r_{o}^{2} \sin (\theta) \cos (\theta)}{D_{1}^{3}} & \\
\hline
\end{array}
$$

3f	$\tau=\frac{6 G m M_{M} r_{o}^{2} \sin (\theta) \cos (\theta)}{D_{1}^{3}}=4.1 \times 10^{16} \mathrm{~N} \mathrm{~m}$	0.5

3 g	Since $\omega_{M 1}^{2} D_{1}^{3}=G M_{E}$, we have that the angular momentum of the Moon is	1.0

$I_{M 1} \omega_{M 1}=M_{M} D_{1}^{2}\left[\frac{G M_{E}}{D_{1}^{3}}\right]^{1 / 2}=M_{M}\left[D_{1} G M_{E}\right]^{1 / 2}$
The torque will be:
$\tau=\frac{M_{M}\left[G M_{E}\right]^{1 / 2} \Delta\left(D_{1}^{1 / 2}\right)}{\Delta t}=\frac{M_{M}\left[G M_{E}\right]^{1 / 2} \Delta D_{1}}{2\left[D_{1}\right]^{1 / 2} \Delta t}$
So, we have that
$\Delta D_{1}=\frac{2 \tau \Delta t}{M_{M}}\left[\frac{D_{1}}{G M_{E}}\right]^{1 / 2}$
That for $\Delta t=3.1 \times 10^{7} \mathrm{~s}=1$ year, gives $\Delta D_{1}=0.034 \mathrm{~m}$.
This is the yearly increase in the Earth-Moon distance.

3 h	We now use that $\tau=-\frac{I_{E} \Delta \omega_{E 1}}{\Delta t}$ from where we get $\Delta \omega_{E 1}=-\frac{\tau \Delta t}{I_{E}}$ that for $\Delta t=3.1 \times 10^{7} \mathrm{~s}=1$ year gives $\Delta \omega_{E 1}=-1.6 \times 10^{-14} \mathrm{~s}^{-1}$. If P_{E} is the period of time considered, we have that: $\frac{\Delta P_{E}}{P_{E}}=-\frac{\Delta \omega_{E 1}}{\omega_{E}}$ since $P_{E}=1$ day $=8.64 \times 10^{4} \mathrm{~s}$, we get $\Delta P_{E}=1.9 \times 10^{-5} \mathrm{~s}$.	
This is the amount of time that the day lengthens in a year.		

4. Where is the energy going?

4 a	The present total (rotational plus gravitational) energy of the system is:	0.4
	$E=\frac{1}{2} I_{E} \omega_{E 1}^{2}+\frac{1}{2} I_{M} \omega_{M 1}^{2}-\frac{G M_{E} M_{M}}{D_{1}}$.	
	Using that	
	$\omega_{M 1}^{2} D_{1}^{3}=G M_{E}$, we get	

$$
E=\frac{1}{2} I_{E} \omega_{E 1}^{2}-\frac{1}{2} \frac{G M_{E} M_{M}}{D_{1}}
$$

4 b	$\Delta E=I_{E} \omega_{E 1} \Delta \omega_{E 1}+\frac{1}{2} \frac{G M_{E} M_{M}}{D_{1}^{2}} \Delta D_{1}$, that gives	0.4
$\Delta E=-9.0 \times 10^{19} \mathrm{~J}$		

4 c	$M_{\text {water }}=4 \pi r_{o}^{2} \times h \times \rho_{\text {water }} \mathrm{kg}=2.6 \times 10^{17} \mathrm{~kg}$.	0.2

4 d	$\Delta E_{\text {water }}=-g M_{\text {water }} \times 0.5 \mathrm{~m} \times 2$ day $^{-1} \times 365$ days $\times 0.1=-9.3 \times 10^{19}$ J. Then, the two energy estimates are comparable.	0.3

