
     Theoretical Competition:    Solution 

Question 1         Page 1 of 7 

   

1 

 

I. Solution 

 

 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1   Let O be their centre of mass. Hence  
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From Eq. (2), or using reduced mass, 
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1.2   Since   is infinitesimal, it has no gravitational influences on the motion of neither M nor  

m . For   to remain stationary relative to both M  and m  we must have: 
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Substituting
2

1

GM

r
 from Eq. (5) into Eq. (4), and using the identity 

1 2 1 2 1 2sin cos cos sin sin( )        , we get 
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The distances 
2r and  , the angles 

1  and 
2  are related by two Sine Rule equations  
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Substitute (7) into (6) 
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Since 
m R

M m R r


 
,Eq. (10) gives 
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By substituting 
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 from Eq. (5) into Eq. (4), and repeat a similar procedure, we get
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Alternatively,   
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Combining with Eq. (5) gives 1 2r r                                    
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Hence, it is an equilateral triangle with  
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The distance   is calculated from the Cosine Rule. 
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Alternative Solution to 1.2 

 

Since   is infinitesimal, it has no gravitational influences on the motion of neither M  nor  

m .For   to remain stationary relative to both M  and m  we must have: 
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sin sin
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Note that   
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Equations (5) and (6):   1 2r r    ………………………  (7) 
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The equation (4) then becomes: 
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Equations (8) and (10):   
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Note that from figure,   
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1.3 The energy of the mass is given by 
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Since the perturbation is in the radial direction, angular momentum is conserved 

( 1 2
r r and m M ), 
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Since the energy is conserved,  
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Equations (11) and (12):   
 

2

1
1 2 23

sin sin
r rM m

M R r
  


 


 ………………………  (13) 

Also from figure,   

     
2 2 2 2

2 1 2 1 2 1 1 1 22 cos 2 1 cosR r r rr r r              ………………  (14) 

Equations (13) and (14):   
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Hence M  and m  from an equilateral triangle of sides  R r  

Distance   to M  is  R r  
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Since 0
d
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 , we have  
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Using binomial expansion (1 ) 1n n    , 
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Using 
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From the figure, 0 0 cos30  or 
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Angular frequency of oscillation is 0

7

2
 . 

 

Alternative solution: 

M m  gives R r  and 2

0 3 3

( )

( ) 4

G M M GM

R R R



 


. The unperturbed radial distance of   is 

3R , so the perturbed radial distance can be represented by 3R   where 3R   as 

shown in the following figure.  

Using Newton’s 2
nd

 law, 
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The conservation of angular momentum gives 
2 2

0( 3 ) ( 3 )R R    .                                          

(2) 

Manipulate (1) and (2) algebraically, applying 2 0   and binomial approximation. 
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1.4 Relative velocity 

 

Let v  = speed of each spacecraft as it moves in circle around the centre O. 

The relative velocities are denoted by the subscripts A, B and C. 

For example, BAv  is the velocity of B as observed by A. 

 

The period of circular motion is 1 year 365 24 60 60T      s.   ………… (28) 

The angular frequency 
2

T


   

The speed 575 m/s
2cos30

L
v  


       ………… (29) 
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The speed is much less than the speed light  Galilean transformation. 

 

In Cartesian coordinates, the velocities of B and C (as observed by O) are  

 
 

For B, ˆ ˆcos60 sin 60Bv v v   i j  

 

For C, ˆ ˆcos60 sin 60Cv v v   i j  

 

Hence BC
ˆ ˆ2 sin 60 3v v v    j j  

The speed of B as observed by C  is 3 996 m/sv       ………… (30) 

 

Notice that the relative velocities for each pair are anti-parallel. 

 

Alternative solution for 1.4 

 

One can obtain BCv  by considering the rotation about the axis at one of the spacecrafts. 
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