I. Solution

1.1 Let O be their centre of mass. Hence

$$
\begin{equation*}
M R-m r=0 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& m \omega_{0}^{2} r=\frac{G M m}{(R+r)^{2}} \\
& M \omega_{0}^{2} R=\frac{G M m}{(R+r)^{2}} \tag{2}
\end{align*}
$$

From Eq. (2), or using reduced mass, $\omega_{0}^{2}=\frac{G(M+m)}{(R+r)^{3}}$
Hence, $\omega_{0}^{2}=\frac{G(M+m)}{(R+r)^{3}}=\frac{G M}{r(R+r)^{2}}=\frac{G m}{R(R+r)^{2}}$.
1.2 Since μ is infinitesimal, it has no gravitational influences on the motion of neither M nor m. For μ to remain stationary relative to both M and m we must have:

$$
\begin{align*}
\frac{G M \mu}{r_{1}^{2}} \cos \theta_{1}+\frac{G m \mu}{r_{2}^{2}} \cos \theta_{2} & =\mu \omega_{0}^{2} \rho=\frac{G(M+m) \mu}{(R+r)^{3}} \rho \tag{4}\\
\frac{G M \mu}{r_{1}^{2}} \sin \theta_{1} & =\frac{G m \mu}{r_{2}^{2}} \sin \theta_{2} \tag{5}
\end{align*}
$$

Substituting $\frac{G M}{r_{1}^{2}}$ from Eq. (5) into Eq. (4), and using the identity
$\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}=\sin \left(\theta_{1}+\theta_{2}\right)$, we get

$$
\begin{equation*}
m \frac{\sin \left(\theta_{1}+\theta_{2}\right)}{r_{2}^{2}}=\frac{(M+m)}{(R+r)^{3}} \rho \sin \theta_{1} \tag{6}
\end{equation*}
$$

The distances r_{2} and ρ, the angles θ_{1} and θ_{2} are related by two Sine Rule equations

$$
\begin{align*}
& \frac{\sin \psi_{1}}{\rho}=\frac{\sin \theta_{1}}{R} \\
& \frac{\sin \psi_{1}}{r_{2}}=\frac{\sin \left(\theta_{1}+\theta_{2}\right)}{R+r} \tag{7}
\end{align*}
$$

Substitute (7) into (6)

$$
\begin{equation*}
\frac{1}{r_{2}^{3}}=\frac{R}{(R+r)^{4}} \frac{(M+m)}{m} \tag{10}
\end{equation*}
$$

Since $\frac{m}{M+m}=\frac{R}{R+r}$,Eq. (10) gives

$$
\begin{equation*}
r_{2}=R+r \tag{11}
\end{equation*}
$$

By substituting $\frac{G m}{r_{2}^{2}}$ from Eq. (5) into Eq. (4), and repeat a similar procedure, we get

$$
\begin{equation*}
r_{1}=R+r \tag{12}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { Alternatively, } \quad & \frac{r_{1}}{\sin \left(180^{\circ}-\phi\right)}=\frac{R}{\sin \theta_{1}} \text { and } \frac{r_{2}}{\sin \phi}=\frac{r}{\sin \theta_{2}} \\
& \frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{R}{r} \times \frac{r_{2}}{r_{1}}=\frac{m}{M} \times \frac{r_{2}}{r_{1}}
\end{array}
$$

Combining with Eq. (5) gives $r_{1}=r_{2}$

Hence, it is an equilateral triangle with

$$
\begin{align*}
& \psi_{1}=60^{\circ} \tag{13}\\
& \psi_{2}=60^{\circ}
\end{align*}
$$

The distance ρ is calculated from the Cosine Rule.

$$
\begin{align*}
& \rho^{2}=r^{2}+(R+r)^{2}-2 r(R+r) \cos 60^{\circ} \\
& \rho=\sqrt{r^{2}+r R+R^{2}} \tag{14}
\end{align*}
$$

Alternative Solution to 1.2

Since μ is infinitesimal, it has no gravitational influences on the motion of neither M nor m.For μ to remain stationary relative to both M and m we must have:

$$
\begin{align*}
\frac{G M \mu}{r_{1}^{2}} \cos \theta_{1}+\frac{G m \mu}{r_{2}^{2}} \cos \theta_{2} & =\mu \omega^{2} \rho=\frac{G(M+m) \mu}{(R+r)^{3}} \rho \tag{4}\\
\frac{G M \mu}{r_{1}^{2}} \sin \theta_{1} & =\frac{G m \mu}{r_{2}^{2}} \sin \theta_{2} \tag{5}
\end{align*}
$$

Note that

$$
\begin{align*}
& \frac{r_{1}}{\sin \left(180^{\circ}-\phi\right)}=\frac{R}{\sin \theta_{1}} \\
& \frac{r_{2}}{\sin \phi}=\frac{r}{\sin \theta_{2}} \quad \text { (see figure) } \\
& \frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{R}{r} \times \frac{r_{2}}{r_{1}}=\frac{m}{M} \times \frac{r_{2}}{r_{1}} \tag{6}
\end{align*}
$$

Equations (5) and (6):

$$
\begin{align*}
& r_{1}=r_{2} \tag{7}\\
& \frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{m}{M} \tag{8}\\
& \psi_{1}=\psi_{2} \tag{9}
\end{align*}
$$

The equation (4) then becomes:

$$
\begin{equation*}
M \cos \theta_{1}+m \cos \theta_{2}=\frac{(M+m)}{(R+r)^{3}} r_{1}^{2} \rho \tag{10}
\end{equation*}
$$

Equations (8) and (10): $\sin \left(\theta_{1}+\theta_{2}\right)=\frac{M+m}{M} \frac{r_{1}^{2} \rho}{(R+r)^{3}} \sin \theta_{2}$
Note that from figure, $\quad \frac{\rho}{\sin \psi_{2}}=\frac{r}{\sin \theta_{2}}$

Equations (11) and (12): $\sin \left(\theta_{1}+\theta_{2}\right)=\frac{M+m}{M} \frac{r_{1}^{2} r}{(R+r)^{3}} \sin \psi_{2}$
Also from figure,

$$
\begin{equation*}
(R+r)^{2}=r_{2}^{2}-2 r_{1} r_{2} \cos \left(\theta_{1}+\theta_{2}\right)+r_{1}^{2}=2 r_{1}^{2}\left[1-\cos \left(\theta_{1}+\theta_{2}\right)\right] \tag{14}
\end{equation*}
$$

Equations (13) and (14): $\sin \left(\theta_{1}+\theta_{2}\right)=\frac{\sin \psi_{2}}{2\left[1-\cos \left(\theta_{1}+\theta_{2}\right)\right]}$

$$
\begin{align*}
& \theta_{1}+\theta_{2}=180^{\circ}-\psi_{1}-\psi_{2}=180^{\circ}-2 \psi_{2} \quad(\text { see figure }) \tag{15}\\
\therefore \quad & \cos \psi_{2}=\frac{1}{2}, \psi_{2}=60^{\circ}, \psi_{1}=60^{\circ}
\end{align*}
$$

Hence M and m from an equilateral triangle of sides $(R+r)$
Distance μ to M is $R+r$
Distance μ to m is $R+r$
Distance μ to O is $\rho=\sqrt{\left(\frac{R+r}{2}-R\right)^{2}+\left\{(R+r) \frac{\sqrt{3}}{2}\right\}^{2}}=\sqrt{R^{2}+R r+r^{2}}$
1.3 The energy of the mass μ is given by
$E=-\frac{G M \mu}{r_{1}}-\frac{G m \mu}{r_{2}}+\frac{1}{2} \mu\left(\left(\frac{d \rho}{d t}\right)^{2}+\rho^{2} \omega^{2}\right)$
Since the perturbation is in the radial direction, angular momentum is conserved
($r_{1}=r_{2}=\Re$ and $m=M$),
$E=-\frac{2 G M \mu}{\mathfrak{R}}+\frac{1}{2} \mu\left(\left(\frac{d \rho}{d t}\right)^{2}+\frac{\rho_{0}{ }^{4} \omega_{0}{ }^{2}}{\rho^{2}}\right)$
Since the energy is conserved,
$\frac{d E}{d t}=0$
$\frac{d E}{d t}=\frac{2 G M \mu}{\mathfrak{R}^{2}} \frac{d \mathfrak{R}}{d t}+\mu \frac{d \rho}{d t} \frac{d^{2} \rho}{d t^{2}}-\mu \frac{\rho_{0}{ }^{4} \omega_{0}{ }^{2}}{\rho^{3}} \frac{d \rho}{d t}=0$.
$\frac{d \mathfrak{R}}{d t}=\frac{d \mathfrak{R}}{d \rho} \frac{d \rho}{d t}=\frac{d \rho}{d t} \frac{\rho}{\mathfrak{R}}$
$\frac{d E}{d t}=\frac{2 G M \mu}{\mathfrak{R}^{3}} \rho \frac{d \rho}{d t}+\mu \frac{d \rho}{d t} \frac{d^{2} \rho}{d t^{2}}-\mu \frac{\rho_{0}{ }^{4} \omega_{0}{ }^{2}}{\rho^{3}} \frac{d \rho}{d t}=0$

Since $\frac{d \rho}{d t} \neq 0$, we have
$\frac{2 G M}{\mathfrak{R}^{3}} \rho+\frac{d^{2} \rho}{d t^{2}}-\frac{\rho_{0}{ }^{4} \omega_{0}{ }^{2}}{\rho^{3}}=0$ or
$\frac{d^{2} \rho}{d t^{2}}=-\frac{2 G M}{\mathfrak{R}^{3}} \rho+\frac{\rho_{0}{ }^{4} \omega_{0}{ }^{2}}{\rho^{3}}$.
The perturbation from \mathfrak{R}_{0} and ρ_{0} gives $\mathfrak{R}=\mathfrak{R}_{0}\left(1+\frac{\Delta \mathfrak{R}}{\mathfrak{R}_{0}}\right)$ and $\rho=\rho_{0}\left(1+\frac{\Delta \rho}{\rho_{0}}\right)$.

Then

$$
\begin{equation*}
\frac{d^{2} \rho}{d t^{2}}=\frac{d^{2}}{d t^{2}}\left(\rho_{0}+\Delta \rho\right)=-\frac{2 G M}{\mathfrak{R}_{0}^{3}\left(1+\frac{\Delta \mathfrak{R}}{\mathfrak{R}_{0}}\right)^{3}} \rho_{0}\left(1+\frac{\Delta \rho}{\rho_{0}}\right)+\frac{\rho_{0}{ }^{4} \omega_{0}{ }^{2}}{\rho_{0}^{3}\left(1+\frac{\Delta \rho}{\rho_{0}}\right)^{3}} \tag{21}
\end{equation*}
$$

Using binomial expansion $(1+\varepsilon)^{n} \approx 1+n \varepsilon$,

$$
\begin{equation*}
\frac{d^{2} \Delta \rho}{d t^{2}}=-\frac{2 G M}{\mathfrak{R}_{0}^{3}} \rho_{0}\left(1+\frac{\Delta \rho}{\rho_{0}}\right)\left(1-\frac{3 \Delta \mathfrak{R}}{\mathfrak{R}_{0}}\right)+\rho_{0} \omega_{0}^{2}\left(1-\frac{3 \Delta \rho}{\rho_{0}}\right) . \tag{22}
\end{equation*}
$$

Using $\Delta \rho=\frac{\Re}{\rho} \Delta \mathfrak{R}$,

$$
\begin{equation*}
\frac{d^{2} \Delta \rho}{d t^{2}}=-\frac{2 G M}{\mathfrak{R}_{0}^{3}} \rho_{0}\left(1+\frac{\Delta \rho}{\rho_{0}}-\frac{3 \rho_{0} \Delta \rho}{\mathfrak{R}_{0}^{2}}\right)+\rho_{0} \omega_{0}^{2}\left(1-\frac{3 \Delta \rho}{\rho_{0}}\right) . \tag{23}
\end{equation*}
$$

Since $\omega_{0}^{2}=\frac{2 G M}{\mathfrak{R}_{0}^{3}}$,

$$
\begin{align*}
\frac{d^{2} \Delta \rho}{d t^{2}} & =-\omega_{0}^{2} \rho_{0}\left(1+\frac{\Delta \rho}{\rho_{0}}-\frac{3 \rho_{0} \Delta \rho}{\mathfrak{R}_{0}^{2}}\right)+\omega_{0}^{2} \rho_{0}\left(1-\frac{3 \Delta \rho}{\rho_{0}}\right) \tag{24}\\
\frac{d^{2} \Delta \rho}{d t^{2}} & =-\omega_{0}^{2} \rho_{0}\left(\frac{4 \Delta \rho}{\rho_{0}}-\frac{3 \rho_{0} \Delta \rho}{\mathfrak{R}_{0}^{2}}\right) \tag{25}\\
\frac{d^{2} \Delta \rho}{d t^{2}} & =-\omega_{0}^{2} \Delta \rho\left(4-\frac{3 \rho_{0}^{2}}{\mathfrak{R}_{0}^{2}}\right) \tag{26}
\end{align*}
$$

From the figure, $\rho_{0}=\mathfrak{R}_{0} \cos 30^{\circ}$ or $\frac{\rho_{0}{ }^{2}}{\mathfrak{R}_{0}{ }^{2}}=\frac{3}{4}$,

$$
\begin{equation*}
\frac{d^{2} \Delta \rho}{d t^{2}}=-\omega_{0}^{2} \Delta \rho\left(4-\frac{9}{4}\right)=-\frac{7}{4} \omega_{0}^{2} \Delta \rho . \tag{27}
\end{equation*}
$$

Angular frequency of oscillation is $\frac{\sqrt{7}}{2} \omega_{0}$.

Alternative solution:
$M=m$ gives $R=r$ and $\omega_{0}^{2}=\frac{G(M+M)}{(R+R)^{3}}=\frac{G M}{4 R^{3}}$. The unperturbed radial distance of μ is $\sqrt{3} R$, so the perturbed radial distance can be represented by $\sqrt{3} R+\zeta$ where $\zeta \ll \sqrt{3} R$ as shown in the following figure.
Using Newton's $2^{\text {nd }}$ law, $-\frac{2 G M \mu}{\left\{R^{2}+(\sqrt{3} R+\zeta)^{2}\right\}^{3 / 2}}(\sqrt{3} R+\zeta)=\mu \frac{d^{2}}{d t^{2}}(\sqrt{3} R+\zeta)-\mu \omega^{2}(\sqrt{3} R+\zeta)$.
(1)

The conservation of angular momentum gives $\mu \omega_{0}(\sqrt{3} R)^{2}=\mu \omega(\sqrt{3} R+\zeta)^{2}$.
(2)

Manipulate (1) and (2) algebraically, applying $\zeta^{2} \approx 0$ and binomial approximation.
$-\frac{2 G M}{\left\{R^{2}+(\sqrt{3} R+\zeta)^{2}\right\}^{3 / 2}}(\sqrt{3} R+\zeta)=\frac{d^{2} \zeta}{d t^{2}}-\frac{\omega_{0}{ }^{2} \sqrt{3} R}{(1+\zeta / \sqrt{3} R)^{3}}$
$-\frac{2 G M}{\left\{4 R^{2}+2 \sqrt{3} \zeta R\right\}^{3 / 2}}(\sqrt{3} R+\zeta) \approx \frac{d^{2} \zeta}{d t^{2}}-\frac{\omega_{0}^{2} \sqrt{3} R}{(1+\zeta / \sqrt{3} R)^{3}}$
$-\frac{G M}{4 R^{3}} \sqrt{3} R \frac{(1+\zeta / \sqrt{3} R)}{(1+\sqrt{3} \zeta / 2 R)^{3 / 2}}=\frac{d^{2} \zeta}{d t^{2}}-\frac{\omega_{0}{ }^{2} \sqrt{3} R}{(1+\zeta / \sqrt{3} R)^{3}}$
$-\omega_{0}^{2} \sqrt{3} R\left(1-\frac{3 \sqrt{3} \zeta}{4 R}\right)\left(1+\frac{\zeta}{\sqrt{3} R}\right) \approx \frac{d^{2} \zeta}{d t^{2}}-\omega_{0}^{2} \sqrt{3} R\left(1-\frac{3 \zeta}{\sqrt{3} R}\right)$
$\frac{d^{2}}{d t^{2}} \zeta=-\left(\frac{7}{4} \omega_{0}{ }^{2}\right) \zeta$

1.4 Relative velocity

Let $v=$ speed of each spacecraft as it moves in circle around the centre O .
The relative velocities are denoted by the subscripts A, B and C .
For example, v_{BA} is the velocity of B as observed by A .

The period of circular motion is 1 year $T=365 \times 24 \times 60 \times 60 \mathrm{~s}$.
The angular frequency $\omega=\frac{2 \pi}{T}$
The speed $v=\omega \frac{L}{2 \cos 30^{\circ}}=575 \mathrm{~m} / \mathrm{s}$

The speed is much less than the speed light \rightarrow Galilean transformation.
In Cartesian coordinates, the velocities of B and C (as observed by O) are

For $\mathbf{B}, \vec{v}_{B}=v \cos 60^{\circ} \hat{\mathbf{i}}-v \sin 60^{\circ} \hat{\mathbf{j}}$
For $\mathrm{C}, \vec{v}_{C}=v \cos 60^{\circ} \hat{\mathbf{i}}+v \sin 60^{\circ} \hat{\mathbf{j}}$
Hence $\vec{v}_{\mathrm{BC}}=-2 v \sin 60^{\circ} \hat{\mathbf{j}}=-\sqrt{3} v \hat{\mathbf{j}}$
The speed of B as observed by C is $\sqrt{3} v \approx 996 \mathrm{~m} / \mathrm{s}$
Notice that the relative velocities for each pair are anti-parallel.

Alternative solution for 1.4

One can obtain v_{BC} by considering the rotation about the axis at one of the spacecrafts.
$v_{\mathrm{BC}}=\omega L=\frac{2 \pi}{365 \times 24 \times 60 \times 60 \mathrm{~s}}\left(5 \times 10^{6} \mathrm{~km}\right) \approx 996 \mathrm{~m} / \mathrm{s}$

