QUESTION 3: SOLUTION

1. Using Coulomb's Law, we write the electric field at a distance r is given by

$$
\begin{align*}
& E_{p}=\frac{q}{4 \pi \varepsilon_{0}(r-a)^{2}}-\frac{q}{4 \pi \varepsilon_{0}(r+a)^{2}} \\
& E_{p}=\frac{q}{4 \pi \varepsilon_{0} r^{2}}\left(\frac{1}{\left(1-\frac{a}{r}\right)^{2}}-\frac{1}{\left(1+\frac{a}{r}\right)^{2}}\right) \tag{1}
\end{align*}
$$

Using binomial expansion for small a,

$$
\begin{align*}
E_{p} & =\frac{q}{4 \pi \varepsilon_{0} r^{2}}\left(1+\frac{2 a}{r}-1+\frac{2 a}{r}\right) \\
& =+\frac{4 q a}{4 \pi \varepsilon_{0} r^{3}}=+\frac{q a}{\pi \varepsilon_{0} r^{3}} \tag{2}\\
& =\frac{2 p}{4 \pi \varepsilon_{0} r^{3}}
\end{align*}
$$

2. The electric field seen by the atom from the ion is

$$
\begin{equation*}
\vec{E}_{i o n}=-\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \tag{3}
\end{equation*}
$$

The induced dipole moment is then simply

$$
\begin{equation*}
\vec{p}=\alpha \vec{E}_{i o n}=-\frac{\alpha Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \tag{4}
\end{equation*}
$$

From eq. (2)

$$
\vec{E}_{p}=\frac{2 p}{4 \pi \varepsilon_{0} r^{3}} \hat{r}
$$

The electric field intensity \vec{E}_{p} at the position of an ion at that instant is, using eq. (4),

$$
\vec{E}_{p}=\frac{1}{4 \pi \varepsilon_{0} r^{3}}\left[-\frac{2 \alpha Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}\right]=-\frac{\alpha Q}{8 \pi^{2} \varepsilon_{0}^{2} r^{5}} \hat{r}
$$

The force acting on the ion is

$$
\begin{equation*}
\vec{f}=Q \vec{E}_{p}=-\frac{\alpha Q^{2}}{8 \pi^{2} \varepsilon_{0}^{2} r^{5}} \hat{r} \tag{5}
\end{equation*}
$$

The "-"' sign implies that this force is attractive and Q^{2} implies that the force is attractive regardless of the sign of Q.
3. The potential energy of the ion-atom is given by $U=\int_{r}^{\infty} \vec{f} \cdot d \vec{r}$

Using this, $U=\int_{r}^{\infty} \vec{f} \cdot d \vec{r}=-\frac{\alpha Q^{2}}{32 \pi^{2} \varepsilon_{0}^{2} r^{4}}$
[Remark: Students might use the term $-\vec{p} \cdot \vec{E}$ which changes only the factor in front.]
4. At the position $r_{\text {min }}$ we have, according to the Principle of Conservation of Angular Momentum,

$$
\begin{align*}
m v_{\max } r_{\min } & =m v_{0} b \\
v_{\max } & =v_{0} \frac{b}{r_{\min }} \tag{8}
\end{align*}
$$

And according to the Principle of Conservation of Energy:

$$
\begin{equation*}
\frac{1}{2} m v_{\max }^{2}+\frac{-\alpha Q^{2}}{32 \pi^{2} \varepsilon_{0}^{2} r^{4}}=\frac{1}{2} m v_{0}^{2} \tag{9}
\end{equation*}
$$

Eqs.(12) \& (13):

$$
\begin{align*}
\left(\frac{b}{r_{\text {min }}}\right)^{2}-\frac{\alpha Q^{2} / \frac{1}{2} m v_{0}^{2}}{32 \pi^{2} \varepsilon_{0}^{2} b^{4}}\left(\frac{b}{r_{\text {min }}}\right)^{4} & =1 \\
\left(\frac{r_{\text {min }}}{b}\right)^{4}-\left(\frac{r_{\min }}{b}\right)^{2}+\frac{\alpha Q^{2}}{16 \pi^{2} \varepsilon_{0}^{2} m v_{0}^{2} b^{4}} & =0 \tag{10}
\end{align*}
$$

The roots of eq. (14) are:

$$
\begin{equation*}
r_{\min }=\frac{b}{\sqrt{2}}\left[1 \pm \sqrt{1-\frac{\alpha Q^{2}}{4 \pi^{2} \varepsilon_{0}^{2} m v_{0}^{2} b^{4}}}\right]^{\frac{1}{2}} \tag{11}
\end{equation*}
$$

[Note that the equation (14) implies that $r_{\text {min }}$ cannot be zero, unless b is itself zero.]
Since the expression has to be valid at $Q=0$, which gives

$$
r_{\min }=\frac{b}{\sqrt{2}}[1 \pm 1]^{\frac{1}{2}}
$$

We have to choose " + " sign to make $r_{\text {min }}=b$
Hence,

$$
\begin{equation*}
r_{\min }=\frac{b}{\sqrt{2}}\left[1+\sqrt{1-\frac{\alpha Q^{2}}{4 \pi^{2} \varepsilon_{0}^{2} m v_{0}^{2} b^{4}}}\right]^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

5. A spiral trajectory occurs when (16) is imaginary (because there is no minimum distance of approach).
$r_{\min }$ is real under the condition:

$$
\begin{align*}
& 1 \geq \frac{\alpha Q^{2}}{4 \pi^{2} \varepsilon_{0}^{2} m v_{0}^{2} b^{4}} \\
& b \geq b_{0}=\left(\frac{\alpha Q^{2}}{4 \pi^{2} \varepsilon_{0}^{2} m v_{0}^{2}}\right)^{\frac{1}{4}} \tag{13}
\end{align*}
$$

For $b<b_{0}=\left(\frac{\alpha Q^{2}}{4 \pi^{2} \varepsilon_{0}^{2} m v_{0}^{2}}\right)^{\frac{1}{4}}$ the ion will collide with the atom.
Hence the atom, as seen by the ion, has a cross-sectional area A,

$$
\begin{equation*}
A=\pi b_{0}^{2}=\pi\left(\frac{\alpha Q^{2}}{4 \pi^{2} \varepsilon_{0}^{2} m v_{0}^{2}}\right)^{\frac{1}{2}} \tag{14}
\end{equation*}
$$

