

Earthquake, Volcano and Tsunami

A. Merapi Volcano Eruption

Question	Answer	Marks
A.1	Using Black's Principle the equilibrium temperature can be obtained	0.5 pts
	$m_w c_{vw} (T_e - T_w) + m_m c_{vm} (T_e - T_m) = 0$	
	Thus,	
	$T_e = \frac{m_w c_{vw} T_w + m_m c_{vm} T_m}{m_w c_{vw} + m_m c_{vm}}$	
A.2	For ideal gas, $p_e v_e = RT_e$, thus	0.3 pts
	$p_{e} = \frac{R}{v_{e}} \frac{m_{w} c_{vw} T_{w} + m_{m} c_{vm} T_{m}}{m_{w} c_{vw} + m_{m} c_{vm}}$	
	48 TH	
A.3	The relative velocity u_{rel} can be expressed as $u_{rel} = \kappa \; p^{\alpha} V^{\beta} m^{\gamma}$ and $u_{rel} = \kappa \; p^{\alpha} V^{\beta} m^{\gamma}$	0.5 pts
	where κ is a dimensionless constant.	
	Using dimensional analysis, one can obtain that	
	$LT^{-1} = M^{\alpha + \gamma} L^{-\alpha + 3\beta} T^{-2\alpha}$	
	$\alpha + \gamma = 0$	
	$-\alpha + 3\beta = 1$	
	$-2\alpha = -1$	
	Therefore	
	$u_{rel} = \kappa p^{1/2} V^{1/2} m^{-1/2}$	
	Total score	1.3 pts

B. The Yogyakarta Earthquake

Question	Answer	Ma	rks
B.1	From the given seismogram, fig. 2	0.3	0.5
D.I	x10 ³ m/s 5.0 2.5 0 -2.5 -5.0 -7.5 22:54:00 22:54:045	pts	pts
	One can see that the P-wave arrived at 22:54:045 or (4.5 – 5.5) seconds after the earthquake occurred at the hypocenter.		
	Since the horizontal distance from the epicenter to the seismic station	0.1	
	in Gamping is 22.5 km, and the depth of the hypocenter is 15 km, the distance from the hypocenter to the station is $\sqrt{22.5^2+15^2}~km=27.04~km$	pts	
	Therefore, the P-wave velocity is	0.1	
	$v_P = \frac{27.04 \text{ Km}}{4.7 \text{ s}} = 5.75 \text{ Km/s}$	pts	

Question	Answer	Ma	rks
B.2	Direct wave:	0.2	0.6
	$t_{\text{direct}} = \frac{SR}{v_1} = \frac{\sqrt{500^2 + 15^2}}{v_1} = \frac{502.021}{5.753} \text{ s} = 86.9 \text{ s}$	pts	pts
	As in the case of an optical wave, the Snell's law is also applicable to the seismic wave.	0.4 pts	
	Yogyakarta Denpasar (Epicenter) 500 Km (DNP)		
	Hypocenter x_1 θ x_2 θ Crust		
	x_3 Mantle		
	Illustration for the traveling seismic Wave Reflected wave: $t_{\text{reflected}} = \frac{SC}{v_1} + \frac{CR}{v_1}$		
	$SC\cos\varphi + CR\cos\varphi = 500 \Rightarrow \cot\varphi = \frac{500}{45}$		
	$t_{\text{reflected}} = \frac{45}{v_1 \sin \varphi} = 87.3 \text{ s}$		

Solutions/ Marking Scheme

Question	Answer	Ma	rks
B.3	Velocity of P-wave on the mantle. The fastest wave crossing the mantle	0.4	1.2
	is that propagating along the upperpart of the mantle. From the figure	pts	pts
	on refracted wave, we obtain that		
	$\frac{\sin \theta}{v_1} = \frac{1}{v_2}; \qquad \sin \theta = \frac{v_1}{v_2}; \qquad \cos \theta = \sqrt{1 - \left(\frac{v_1}{v_2}\right)^2}$		
	$\cos \theta = \frac{15}{x_1}$; $x_1 = \frac{15}{\cos \theta}$ km; $x_2 = \frac{30}{\cos \theta}$ km		
	$x_3 = 500 - (x_1 + x_2)\sin\theta = 500 - 45\tan\theta$		
	The total travel time:	0.5	
	$x_1 + x_2 + x_3 = 45 = 500 - 45 \tan \theta$	pts	
	$t = \frac{x_1 + x_2}{v_1} + \frac{x_3}{v_2} = \frac{45}{v_1 \cos \theta} + \frac{500}{v_2} - \frac{45 \tan \theta}{v_2}$		
	$t\cos\theta = 45u_1 + 500u_2\cos\theta - 45u_2\sin\theta$		
	where $u_1=1/v_1^{}$ and $u_2=1/v_2^{}$. Arranging the equation, we get		
	$(500^2 + 45^2)u_2^2 - 2t \ 500u_2 + t^2 - 45^2 \ u_1 = 0$		
	whose solution is		
	$v_2 = \frac{500tv_1^2 + 45v_1\sqrt{(45^2 + 500^2) - t^2v_1^2}}{t^2v_1^2 - 45^2}$		
	$v_2 = \frac{1}{t^2 v_1^2 - 45^2}$		
		0.3	
	x10 ⁻⁵ m/s Station DNP	pts	
	8-		
	4 0		
	-4		
	-8		
	-12		
	22:55:05 22:55:15		
	From the seismogram, we know that the fastest wave arrived at		
	Denpasar station at 22:55:15, which is $t = 75 \text{ s}$ from the origin time of		
	the earthquake in Yogyakarta. Thus		
	$v_2 = 7.1 \text{ km/s}$		

Solut	ions/
Marking	Scheme

Question	Answer	Ma	rks
B.4	By using Snell's law and defining $p = \sin \theta / v$ and $u = 1/v$, we obtain	0.2	1.4
	$p \equiv u(0)\sin\theta_0 = u(z)\sin\theta;$ $\sin\theta = \frac{p}{u(z)}$	pts	pts
	where $u(z) = 1/v(z)$ and θ_0 is the initial angle of the seismic wave direction.	0.5 pts	
	$\frac{dx}{ds} = \sin \theta = \frac{p}{u(z)};$ $\frac{dz}{ds} = \cos \theta = \sqrt{1 - \left(\frac{p}{u(z)}\right)^2}$		
	$\frac{dx}{dz} = \frac{dx}{ds}\frac{ds}{dz} = \frac{p}{u}\frac{u}{(u^2 - p^2)^{1/2}} = p/(u^2 - p^2)^{1/2}$		
	$x = \int_{z_1}^{z_2} \frac{48^{TH}p}{(u^2 - p^2)^{1/2}} dz$ YOGYAKARTA- INDONESIA		
	$\frac{dz}{\theta}$	0.7 pts	
	Illustration for the direction of wave		
	The distance <i>X</i> is equal to twice the distance from epicenter to the turning point. The turning point is the point when θ =90°. Thus		
	$p = u(z_t) = \frac{1}{v_0 + az_t}; z_t = \frac{1 - pv_0}{ap}$		
	$X = 2\int_{0}^{z_{t}} \frac{p(v_{0} + az)}{(1 - p^{2}(v_{0} + az)^{2})^{1/2}} dz = \frac{2}{ap} \left(\sqrt{1 - p^{2}(v_{0} + az)^{2}} - \sqrt{1 - p^{2}v_{0}^{2}} \right)$		

Question	Answer	Ma	rks
B.5	For the travel time, $dt = \frac{ds}{v(z)}$; $\frac{dt}{ds} = u(z)$.	1.0	1.0
	v(z) ds	pts	pts
	Thus		
	$dt dt ds u^2$		
	$\frac{dt}{dz} = \frac{dt}{ds}\frac{ds}{dz} = \frac{u^2}{(u^2 - p^2)^{1/2}}$		
	and therefore		
	$T = 2\int_{0}^{z_{t}} \frac{u^{2}}{(u^{2} - p^{2})^{1/2}} dz = 2\int_{0}^{z_{t}} \frac{1}{(v_{0} + az)} \frac{1}{(1 - p^{2}(v_{0} + az)^{2})^{1/2}} dz$		
B.6	The total travel time from the source to the Denpasar can be calculated using previous relation	0.6 pts	1.0 pts
	$T(p) = 2 \int_{0}^{z_{t}} \frac{u^{2}(z)}{\left(u^{2}(z) - p^{2}\right)^{1/2}} dz$ $YOGYAKARTA-INDONESIA$		
	Which is valid for a continuous $u(z)$. For a simplified stacked of		
	homogeneous layers (Figure F), the integral equation became a		
	summation		
	$T(p) = 2\sum_{i}^{N} \frac{u_{i}^{2} \Delta z_{i}}{\left(u_{i}^{2} - p^{2}\right)^{1/2}}$		
	$u_1^2\Delta z_1$ $u_2^2\Delta z_2$ $u_3^2\Delta z_3$	0.4	
	$T(p) = 2\frac{u_1^2 \Delta z_1}{(u_1^2 - p^2)^{\frac{1}{2}}} + 2\frac{u_2^2 \Delta z_2}{(u_2^2 - p^2)^{\frac{1}{2}}} + 2\frac{u_3^2 \Delta z_3}{(u_3^2 - p^2)^{\frac{1}{2}}}$	pts	
	$2 \times (0.1504)^2 \times 6$ $2 \times (0.1435)^2 \times 9$		
	$= \frac{2 \times (0.1504)^2 \times 6}{(0.1504^2 - 0.143^2)^{\frac{1}{2}}} + \frac{2 \times (0.1435)^2 \times 9}{(0.1435^2 - 0.143^2)^{\frac{1}{2}}}$		
	$2 \times (0.1431)^2 \times 15$		
	$+\frac{2\times(0.1431)^2\times15}{(0.1431^2-0.143^2)^{\frac{1}{2}}}$		
	= 151.64 second		
	Note that the actual travel time from the epicenter to Denpasar is 75		
	seconds. By varying the parameters of velocity and depth up to suitable		
	value of observed travel time, physicist can know Earth structure.		
	Total :	score	5.7
			pts

C. Java Tsunami

Question	Answer	Ma	rks
C.1	The center of mass of the raised ocean water with respect to the ocean	0.5	0.5
	surface is h/2. Thus	pts	pts
	$E_P = \frac{h^2 \rho \lambda Lg}{4}$		
	$E_P = \frac{1}{4}$		
	where $ ho$ is the ocean water density.		
C.2	Considering a shallow ocean wave in Fig. 5, the whole water (from the	0.7	1.2
	surface until the ocean floor) can be considered to be moving due to the	pts	pts
	wave motion. The potential energy is equal to the kinetic energy.		
	$rac{1}{4} ho\lambda h^2 Lg=rac{1}{4} ho dL\lambda U^2$		
	Where $x = \lambda/2$ and U is the horizontal speed of the water component.		
	The water component that was in the upper part $hL^{\frac{\lambda}{2}}$ should be equal to		
	the one that moves horizontally for a half of period of time $\tau/2$, i.e.		
	$hL \lambda/2 = dLU \tau/2.$		
	Thus we have		
	$U = \frac{h\lambda}{\tau d}$		
	$U \equiv \frac{1}{\tau d}$		
	Accordingly,	0.5	
	$ au = rac{\lambda}{\sqrt{gd}}$	pts	
	Thus		
	2		
	$v = \frac{\lambda}{\tau} = \sqrt{gd}$		
C.3	Using the argument that the wave energy density is proportional to its	1.3	1.3
	amplitude $E = kA^2$ with A is amplitude and k is a proportional constant	pts	pts
	Because the energy flux is conserve, then		
	$Eva=E_0v_0a$ for an area a where the wave flow though.		
	Then,		
	$kA^2\sqrt{gd} = kA_0^2\sqrt{gd_0}$		
	$(d_0)^{\frac{1}{4}}$		
	$A = A_0 \left(\frac{d_0}{d}\right)^{\frac{1}{4}}$		
	Therefore the tsunami wave will increase its amplitude and become		
	narrower as it approaches the beach).		
	 Total s	core	3.0

Solutions/ Marking Scheme

T2

Total Score for Problem T2:

Section A: 1.3 points

Section B: 5.7 points

Section C: 3.0 points

Total: 10 points

